Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Effects of mechanical rotation and vibration on spin currents


We discuss theoretically the generation of spin currents in both rotationally and linearly accelerated systems. The spin-orbit interaction modified by inertial effects is derived from the low energy limit of the generally covariant Dirac equation. It is shown that the spin-orbit interaction is responsible for the generation of spin currents by mechanical rotation and vibration. We also study effects of impurity scattering on the mechanically induced spin current, and calculate the spin accumulation by solving the spin diffusion equation with the spin-source term originating from the inertial effects.

This is a preview of subscription content, log in to check access.


  1. [1]

    S. Maekawa ed., Concepts in Spin Electronics (Oxford University Press, Oxford, 2006).

  2. [2]

    A. Hirohata, Y. B. Xu, C. M. Guertler and J. A. C. Bland, Phys. Rev. B 62, 104425 (2001).

  3. [3]

    L. K. Werake and H. Zhao, Nat. Phys. 6, 875 (2010).

  4. [4]

    Y. Tserkovnyak, A. Brataas and G. E. W. Bauer, Phys. Rev. Lett. 88, 117601 (2002).

  5. [5]

    S. E. Barnes and S. Maekawa, Phys. Rev. Lett. 98, 246601 (2007).

  6. [6]

    K. Uchida, S. Takahashi, K. Harii, J. Ieda, W. Koshibae, K. Ando, S. Maekawa and E. Saitoh, Nature (London) 455, 778 (2008).

  7. [7]

    K. Uchida, H. Adachi, T. An, T. Ota, M. Toda, B. Hillebrands, S. Maekawa and E. Saitoh, Nature Mater. 10, 737 (2011).

  8. [8]

    M. Weiler, L. Dreher, C. Heeg, H. Huebl, R. Gross, M. S. Brandt and S. T. B. Goennenwein, Phys. Rev. Lett. 106, 117601 (2011).

  9. [9]

    Y. K. Kato, R. C. Myers, A. C. Gossard and D. D. Awschalom, Science 306, 1910 (2004); J. Wunderlich, B. Kaestner, J. Sinova and T. Jungwirth, Phys. Rev. Lett. 94, 047204 (2005).

  10. [10]

    E. Saitoh, M. Ueda, H. Miyajima and G. Tatara. Appl. Phys. Lett. 88, 182509 (2006).

  11. [11]

    M. Matsuo, J. Ieda, E. Saitoh and S. Maekawa, Phys. Rev. Lett. 106, 076601 (2011).

  12. [12]

    M. Matsuo, J. Ieda, E. Saitoh and S. Maekawa, Appl. Phys. Lett. 98, 242501 (2011).

  13. [13]

    M. Matsuo, J. Ieda, E. Saitoh and S. Maekawa, Phys. Rev. B 84, 104410 (2011).

  14. [14]

    D. Brill and J. Wheeler, Rev. Mod. Phys. 29, 465 (1957); N. D. Birrell and P. C. W. Davies, Quantum Fields in Curved Space (Cambridge Univ. Press, Cambrige 1982).

  15. [15]

    L. L. Foldy and S. A. Wouthuysen, Phys. Rev. 78, 29 (1950).

  16. [16]

    S. Tani, Prog. Theor. Phys. 6, 267 (1951).

  17. [17]

    L. Vila, T. Kimura and Y. C. Otani, Phys. Rev. Lett. 99, 226604 (2007).

  18. [18]

    S. Takahashi and S. Maekawa, Sci. Technol. Adv. Mater. 9, 014105 (2008).

  19. [19]

    F. W. Hehl and W.-T. Ni, Phys. Rev. D42, 2045 (1990).

  20. [20]

    D. Xiao, M. Chang and Q. Niu, Rev. Mod. Phys. 82, 1959(2010).

Download references

Author information

Correspondence to Mamoru Matsuo.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Matsuo, M., Ieda, J., Maekawa, S. et al. Effects of mechanical rotation and vibration on spin currents. Journal of the Korean Physical Society 62, 1404–1409 (2013).

Download citation


  • Spin current
  • Spin Hall effect
  • Inertial effects