Journal of the Korean Physical Society

, Volume 62, Issue 10, pp 1404–1409 | Cite as

Effects of mechanical rotation and vibration on spin currents

  • Mamoru MatsuoEmail author
  • Jun’ichi Ieda
  • Sadamichi Maekawa
  • Eiji Saitoh


We discuss theoretically the generation of spin currents in both rotationally and linearly accelerated systems. The spin-orbit interaction modified by inertial effects is derived from the low energy limit of the generally covariant Dirac equation. It is shown that the spin-orbit interaction is responsible for the generation of spin currents by mechanical rotation and vibration. We also study effects of impurity scattering on the mechanically induced spin current, and calculate the spin accumulation by solving the spin diffusion equation with the spin-source term originating from the inertial effects.


Spin current Spin Hall effect Inertial effects 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    S. Maekawa ed., Concepts in Spin Electronics (Oxford University Press, Oxford, 2006).zbMATHGoogle Scholar
  2. [2]
    A. Hirohata, Y. B. Xu, C. M. Guertler and J. A. C. Bland, Phys. Rev. B 62, 104425 (2001).ADSCrossRefGoogle Scholar
  3. [3]
    L. K. Werake and H. Zhao, Nat. Phys. 6, 875 (2010).CrossRefGoogle Scholar
  4. [4]
    Y. Tserkovnyak, A. Brataas and G. E. W. Bauer, Phys. Rev. Lett. 88, 117601 (2002).ADSCrossRefGoogle Scholar
  5. [5]
    S. E. Barnes and S. Maekawa, Phys. Rev. Lett. 98, 246601 (2007).ADSCrossRefGoogle Scholar
  6. [6]
    K. Uchida, S. Takahashi, K. Harii, J. Ieda, W. Koshibae, K. Ando, S. Maekawa and E. Saitoh, Nature (London) 455, 778 (2008).ADSCrossRefGoogle Scholar
  7. [7]
    K. Uchida, H. Adachi, T. An, T. Ota, M. Toda, B. Hillebrands, S. Maekawa and E. Saitoh, Nature Mater. 10, 737 (2011).ADSCrossRefGoogle Scholar
  8. [8]
    M. Weiler, L. Dreher, C. Heeg, H. Huebl, R. Gross, M. S. Brandt and S. T. B. Goennenwein, Phys. Rev. Lett. 106, 117601 (2011).ADSCrossRefGoogle Scholar
  9. [9]
    Y. K. Kato, R. C. Myers, A. C. Gossard and D. D. Awschalom, Science 306, 1910 (2004); J. Wunderlich, B. Kaestner, J. Sinova and T. Jungwirth, Phys. Rev. Lett. 94, 047204 (2005).ADSCrossRefGoogle Scholar
  10. [10]
    E. Saitoh, M. Ueda, H. Miyajima and G. Tatara. Appl. Phys. Lett. 88, 182509 (2006).ADSCrossRefGoogle Scholar
  11. [11]
    M. Matsuo, J. Ieda, E. Saitoh and S. Maekawa, Phys. Rev. Lett. 106, 076601 (2011).ADSCrossRefGoogle Scholar
  12. [12]
    M. Matsuo, J. Ieda, E. Saitoh and S. Maekawa, Appl. Phys. Lett. 98, 242501 (2011).ADSCrossRefGoogle Scholar
  13. [13]
    M. Matsuo, J. Ieda, E. Saitoh and S. Maekawa, Phys. Rev. B 84, 104410 (2011).ADSGoogle Scholar
  14. [14]
    D. Brill and J. Wheeler, Rev. Mod. Phys. 29, 465 (1957); N. D. Birrell and P. C. W. Davies, Quantum Fields in Curved Space (Cambridge Univ. Press, Cambrige 1982).MathSciNetADSzbMATHCrossRefGoogle Scholar
  15. [15]
    L. L. Foldy and S. A. Wouthuysen, Phys. Rev. 78, 29 (1950).ADSzbMATHCrossRefGoogle Scholar
  16. [16]
    S. Tani, Prog. Theor. Phys. 6, 267 (1951).MathSciNetADSzbMATHCrossRefGoogle Scholar
  17. [17]
    L. Vila, T. Kimura and Y. C. Otani, Phys. Rev. Lett. 99, 226604 (2007).ADSCrossRefGoogle Scholar
  18. [18]
    S. Takahashi and S. Maekawa, Sci. Technol. Adv. Mater. 9, 014105 (2008).CrossRefGoogle Scholar
  19. [19]
    F. W. Hehl and W.-T. Ni, Phys. Rev. D42, 2045 (1990).ADSGoogle Scholar
  20. [20]
    D. Xiao, M. Chang and Q. Niu, Rev. Mod. Phys. 82, 1959(2010).MathSciNetADSzbMATHCrossRefGoogle Scholar

Copyright information

© The Korean Physical Society 2013

Authors and Affiliations

  • Mamoru Matsuo
    • 1
    • 2
    Email author
  • Jun’ichi Ieda
    • 1
    • 2
  • Sadamichi Maekawa
    • 1
    • 2
  • Eiji Saitoh
    • 1
    • 2
    • 3
  1. 1.The Advanced Science Research CenterJapan Atomic Energy AgencyTokaiJapan
  2. 2.CRESTJapan Science and Technology AgencySanbancho, TokyoJapan
  3. 3.Institute for Materials ResearchTohoku UniversitySendaiJapan

Personalised recommendations