Skip to main content
Log in

The verwey phase of magnetite — a long-running mystery in magnetism

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

Magnetite (Fe3O4) is the original magnetic material and the parent of ferrite magnets, with modern applications ranging from spintronics to MRI contrast agents. At ambient temperatures magnetite has a cubic spinel-type crystal structure, but it undergoes a complex structural distortion and becomes electrically insulating below the 125 K Verwey transition. The electronic ground state of the Verwey phase has been unclear for over 70 years as the low temperature structure was unknown, but the full superstructure was recently determined by high energy microcrystal x-ray diffraction. An analysis of 168 frozen phonon modes in the acentric (and hence multiferroic) low temperature magnetite structure is presented here. Differences between the amplitudes of centric and acentric branches of, X and W modes all contribute to the significant off-center atomic distortions in the low temperature structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. J. W. Verwey, Nature 144, 327 (1939).

    Article  ADS  Google Scholar 

  2. F. Walz, J. Phys. Condens. Matter 14, R285 (2002).

    Article  ADS  Google Scholar 

  3. J. Yoshida and S. Iida, J. Phys. Soc. Jpn. 42, 230 (1977).

    Article  ADS  Google Scholar 

  4. M. Iizumi et al., Acta Crystallogr B 38, 2121 (1982).

    Article  Google Scholar 

  5. J. P. Attfield, Solid State Sci. 8, 861 (2006).

    Article  ADS  Google Scholar 

  6. J. P. Wright, J. P. Attfield and P. G. Radaelli, Phys. Rev. Lett. 87, 266401 (2001).

    Article  ADS  Google Scholar 

  7. J. P. Wright, J. P. Attfield and P. G. Radaelli, Phys. Rev. B 66, 214422 (2002).

    Article  ADS  Google Scholar 

  8. J. Blasco, J. Garcia and G. Subias, Phys. Rev. B 83, 104105 (2011).

    Article  ADS  Google Scholar 

  9. R. J. Goff, J. P. Wright, J. P. Attfield and P. G. Radaelli, J. Phys.: Condens. Matter 17, 7633 (2005).

    Article  ADS  Google Scholar 

  10. E. Nazarenko et al., Phys. Rev. Lett. 97, 056403 (2006).

    Article  ADS  Google Scholar 

  11. Y. Joly et al., Phys. Rev. B 78, 134110 (2008).

    Article  ADS  Google Scholar 

  12. M. S. Senn, J. P. Wright and J. P. Attfield, Nature 481, 173 (2012).

    Article  ADS  Google Scholar 

  13. H. T. Jeng, G. Y. Guo and D. J. Huang, Phys. Rev. B 74, 195115 (2006).

    Article  ADS  Google Scholar 

  14. K. Yamauchi, T. Fukushima and S. Picozzi, Phys. Rev. B 79, 212404 (2009).

    Article  ADS  Google Scholar 

  15. M. S. Senn, I. Loa, J. P. Wright and J. P. Attfield, Phys. Rev. B 85, 125119 (2012).

    Article  ADS  Google Scholar 

  16. B. J. Campbell, H. T. Stokes, D. E. Tanner and D. M. Hatch, J. Appl. Crystallogr. 39, 607 (2006). Further information is available at http://stokes.byu.edu/iso/isodistort.html.

    Article  Google Scholar 

  17. J. P. Wright, A. M. T. Bell and J. P. Attfield. Solid State Sciences 2, 747 (2000).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Paul Attfield.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Senn, M.S., Wright, J.P. & Attfield, J.P. The verwey phase of magnetite — a long-running mystery in magnetism. Journal of the Korean Physical Society 62, 1372–1375 (2013). https://doi.org/10.3938/jkps.62.1372

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.62.1372

Keywords

Navigation