Journal of the Korean Physical Society

, Volume 61, Issue 6, pp 908–912 | Cite as

Bandwidth-broadening properties by using a variable width structure in a cantilever-type piezoelectric energy scavenger

Article
  • 84 Downloads

Abstract

In this paper, we present the simulation and the experimental results for vibration-energy-scavenging performances in a cantilever-type piezoelectric energy scavenger with bandwidth broadening properties by using a variable width structure. Using the measured mechanical damping ratio and electro-mechanical coupling coefficient of the fabricated cantilever-type device, we simulated the output performances and designed a cantilever-type piezoelectric energy scavenger with bandwidth broadening characteristics. A device based on a parallel-bimorph cantilever structure with a proof mass, which was designed to have a natural resonance frequency of about 60 Hz, and the energy-scavenging capability of a piezoelectric single crystal was measured and compared them with the simulated results. The results showed that several tens of ac volts and a few milliwatts of power were achieved under a 0.1 grms vibration condition with a 3 Hz bandwidth.

Keywords

Vibration-energy-scavenging Piezoelectric Cantilever Bandwidth 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J. Lee, ETRI J. 32, 540 (2010).CrossRefGoogle Scholar
  2. [2]
    S. E. Moon, S.-K. Lee, H.-K. Lee, J.-W. Lee, Y.-S. Yang and J. Kim, J. Korean Phys. Soc. 58, 645 (2011).CrossRefGoogle Scholar
  3. [3]
    I. Kim, H. Joo, S. Jeong, M. Kim and J. Song, J. Korean Phys. Soc. 56, 370 (2010).CrossRefGoogle Scholar
  4. [4]
    S. P. Beeby, M. J. Tudor and N. M. White, Meas. Sci. Technol. 17, R175 (2006).CrossRefGoogle Scholar
  5. [5]
    S. C. Stanton, C. C. McGehee and B. P. Mann, Appl. Phys. Lett. 95, 174103 (2009).ADSCrossRefGoogle Scholar
  6. [6]
    M. Ferrari, V. Ferrari, M. Guizzetti, D. Mrioli and A. Taroni, Sens. Actuators, A 142, 329 (2008).CrossRefGoogle Scholar
  7. [7]
    S. Qi, R. Shuttleworth, S. O. Oyadiji and J. Wright, Smart Mater. Struct. 19, 094009 (2010).ADSCrossRefGoogle Scholar
  8. [8]
    B. Marinkovic and H. Koser, Appl. Phys. Lett. 94, 103505 (2009).ADSCrossRefGoogle Scholar
  9. [9]
    A. Hajati and S.-G. Kim, Appl. Phys. Lett. 99, 083105 (2011).ADSCrossRefGoogle Scholar
  10. [10]
    D. Shen, S.-Y. Choe and D.-J. Kim, Jpn. J. Appl. Phys. 46, 6755 (2007).ADSCrossRefGoogle Scholar
  11. [11]
    A. Badel, A. Benayad, E. Lefeuvre, L. Lebrun, C. Richard and D. Guyomar, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53, 673 (2006).Google Scholar
  12. [12]
    J. H. Cho, R. F. Richards, D. F. Bahr and C. D. Ri-chards, in IEEE Ultrasonics Symposium (Vancouver, Canada, October 2–6, 2006), p. 485.Google Scholar
  13. [13]
    J. Twiefel, B. Richter, T. Sattel and J. Wallaschek, J. Electroceram. 20, 203 (2008).CrossRefGoogle Scholar
  14. [14]
    S. Roundy, P. K. Wright and J. Rabaey, Comput. Commun. 26, 1131 (2003).CrossRefGoogle Scholar
  15. [15]
  16. [16]
    J. W. Yi, W. Y. Shih and W. H. Shih, J. Appl. Phys. 91, 1680 (2003).ADSCrossRefGoogle Scholar
  17. [17]
    S. Priya, Appl. Phys. Lett. 87, 18410 (2005).CrossRefGoogle Scholar
  18. [18]
    A. Erturk and D. J. Inman, J. Intell. Mater. Syst. Struct. 19, 1311 (2008).CrossRefGoogle Scholar
  19. [19]
    J. Ajitsaria, S. Y. Choe, D. Shen and D. J. Kim, Smart Mater. Struct. 16, 447 (2007).ADSCrossRefGoogle Scholar
  20. [20]
    M. Ferrari, V. Ferrari, D. Marioli and A. Taroni, IEEE Trans. Instrum. Meas. 55, 2096 (2006).CrossRefGoogle Scholar
  21. [21]
    C. H. Park, J. Sound Vib. 268, 115 (2003).ADSCrossRefGoogle Scholar
  22. [22]
    Q. Chen and Q. M. Wang, Appl. Phys. Lett. 86, 022905 (2005).ADSCrossRefGoogle Scholar

Copyright information

© The Korean Physical Society 2012

Authors and Affiliations

  1. 1.Electronics and Telecommunications Research InstituteDaejeonKorea
  2. 2.SFA ENGINEERING R&D CenterHwaseongKorea

Personalised recommendations