Skip to main content
Log in

Correlation between ultra-high-energy cosmic rays and active galactic nuclei from the fermi large-area telescope

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

We study the possibility that γ-ray loud active galactic nuclei (AGNs) are the sources of ultrahigh-energy cosmic rays (UHECRs) by using a correlation analysis of their locations and the arrival directions of UHECR. We use data for γ-ray loud AGN with d ≤ 100 Mpc from the second Fermi Large-area Telescope AGN catalog and UHECR data with E ≥ 55 EeV observed by the Pierre Auger Observatory. The distribution of arrival directions expected from theγ-ray loud AGN is compared with that of the observed UHECR by using the correlational angular distance distribution and the Kolmogorov-Smirnov test. We conclude that the hypothesis that the γ-ray loud AGN are the dominant sources of UHECR is disfavored unless there is a large smearing effect due to intergalactic magnetic fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Greisen, Phys. Rev. Lett. 16, 748 (1966).

    Article  ADS  Google Scholar 

  2. G. T. Zatsepin and V. A. Kuzmin, JETP Lett. 4, 78 (1966).

    ADS  Google Scholar 

  3. R. U. Abbasi et al. [The HiRes Collaboration], Phys. Rev. Lett. 100, 101101 (2008).

    Article  ADS  Google Scholar 

  4. J. Abraham et al. [The Pierre Auger Collaboration], Phys. Lett. B 685, 239 (2010).

    Article  ADS  Google Scholar 

  5. Y. Tsunesada [for the Telescope Array Collaboration], arXiv:1111.2507 [astro-ph.HE].

  6. A. M. Hillas, Annu. Rev. Astron. Astr. 22, 425 (1984).

    Article  ADS  Google Scholar 

  7. E. Waxman, Astrophys. J. 452, L1 (1995).

    Article  ADS  Google Scholar 

  8. M. Vietri, Astrophys. J. 453, 883 (1995).

    Article  ADS  Google Scholar 

  9. J. P. Rachen and P. L. Biermann, Astron. Astrophys. 272, 161 (1993).

    ADS  Google Scholar 

  10. F. Halzen and E. Zas, Astrophys. J. 488, 669 (1997).

    Article  ADS  Google Scholar 

  11. M. Milgrom and V. Usov, Astrophys. J. 449, L37 (1995).

    Article  ADS  Google Scholar 

  12. E. Waxman, Phys. Rev. Lett. 75, 386 (1995).

    Article  ADS  Google Scholar 

  13. T. Stanev, R. K. Schaefer and A. A. Watson, Astropart. Phys. 5, 75 (1996).

    Article  ADS  Google Scholar 

  14. D. F. Torres, E. Boldt, T. Hamilton and M. Loewenstein, Phys. Rev. D 66, 023001 (2002).

    Article  ADS  Google Scholar 

  15. S. Singh, C. P. Ma and J. Arons, Phys. Rev. D 69, 063003 (2004).

    Article  ADS  Google Scholar 

  16. D. S. Gorbunov, P. G. Tinyakov, I. I. Tkachev and S. V. Troitsky, JETP Lett. 80, 145 (2004).

    Article  ADS  Google Scholar 

  17. R. U. Abbasi et al. [HiRes Collaboration], Astrophys. J. 636, 680 (2006).

    Article  ADS  Google Scholar 

  18. R. U. Abbasi et al. [HiRes Collaboration], Astropart. Phys. 30, 175 (2008).

    Article  ADS  Google Scholar 

  19. J. Abraham et al. [Pierre Auger Collaboration], Science 318, 938 (2007).

    Article  ADS  Google Scholar 

  20. P. Abreu et al. [Pierre Auger Collaboration], Astropart. Phys. 34, 314 (2010).

    Article  ADS  Google Scholar 

  21. H. B. Kim and J. Kim, JCAP 1103, 006 (2011).

    Article  ADS  Google Scholar 

  22. H. B. Kim and J. Kim, arXiv:1203.0386 [astro-ph.HE].

  23. M-P. Véron-Cetty and P. Véron, Astron. Astrophys. 455, 773 (2006).

    Article  ADS  Google Scholar 

  24. M-P. Véron-Cetty and P. Véron, Astron. Astrophys. 518, A10 (2010).

    Article  Google Scholar 

  25. D. Harari, S. Mollerach and E. Roulet, Mon. Not. R. Astron. Soc. 394, 916 (2009).

    Article  ADS  Google Scholar 

  26. M. R. George et al., Mon. Not. R. Astron. Soc. 388, L59 (2008).

    Article  ADS  Google Scholar 

  27. R. S. Nemmen, C. Bonatto and T. Storchi-Bergmann, Astrophys. J. 722, 281 (2010).

    Article  ADS  Google Scholar 

  28. Y. Y. Jiang et al., Astrophys. J. 719, 459 (2010).

    Article  ADS  Google Scholar 

  29. The Fermi-LAT Collaboration, Astrophys. J. 743, 171 (2011).

    Article  Google Scholar 

  30. C. D. Dermer and S. Razzaque, Astrophys. J. 724, 1366 (2010).

    Article  ADS  Google Scholar 

  31. The Fermi-LAT Collaboration, Astrophys. J. 715, 429 (2010).

    Article  Google Scholar 

  32. T. Kashti and E. Waxman, JCAP 0805, 006 (2008).

    Article  ADS  Google Scholar 

  33. H. B. J. Koers and P. Tinyakov, JCAP 0904, 003 (2009).

    Article  ADS  Google Scholar 

  34. P. Sommers, Astropart. Phys. 14, 271 (2001).

    Article  ADS  Google Scholar 

  35. D. Ryu, S. Das and H. Kang, Astrophys. J. 710, 1422 (2010).

    Article  ADS  Google Scholar 

  36. J. Abraham et al. [Pierre Auger Collaboration], Phys. Rev. Lett. 104, 091101 (2010).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jihyun Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, J., Kim, H.B. Correlation between ultra-high-energy cosmic rays and active galactic nuclei from the fermi large-area telescope. Journal of the Korean Physical Society 61, 1911–1917 (2012). https://doi.org/10.3938/jkps.61.1911

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.61.1911

Keywords

Navigation