Skip to main content
Log in

Effect of acquisition parameters on digital breast tomosynthesis: Total angular range and number of projection views

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

The purpose of this study was to investigate the effect of different acquisition parameters and to determine the optimal set of acquisition parameters of projection views (PVs) for the new developed digital breast tomosynthesis (DBT) system. The DBT imaging parameters were optimized using 32 different acquisition sets with six angular ranges (±5°, ±10°, ±13°, ±17°, ±21°, and ±25°) and eight projection views (5, 11, 15, 21, 25, 31, 41, and 51 prjections). In addition to the contrastto-noise ratio (CNR), the artifact spread function (ASF) was used to quantify the in-focus plane artifacts along the z-direction in order to explore the relationship between the acquisition parameters and the image quality. A commercially, available breast-mimicking phantom was imaged to qualitatively verify our results. Our results show that a wide angular range improved the reconstructed image quality in the z-direction. If a large number of projections are acquired, then the electronic noise may dominate the CNR due to reduce the radiation dose per projection. Although increasing angular range was found to improve the vertical resolution, due to greater effective breast thickness, the image quality of microcalcifications in the in-focus plane was also found not to be improved by increasing the noise. Therefore, potential trade-offs of these physical imaging properties must be considered to optimize the acquisition configuration of a DBT system. Our results suggest possible directions for further improvements in DBT systems for high quality imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. D. Pisano et al., New Engl. J. Med. 353, 1773 (2005).

    Article  Google Scholar 

  2. L. Tabar, G. Fagerberg, H. H. Chen, S. W. Duffy, C. R. Smart, A. Gad and R. A. Smith, Cancer 75, 2507 (1995).

    Article  Google Scholar 

  3. S. W. Fletcher and J. G. Elmore, New Engl. J. Med. 348, 1672 (2003).

    Article  Google Scholar 

  4. J. Choi, S. J. Hwang and Y. W. Choi, J. Korean Phys. Soc. 60, 1457 (2012).

    Article  ADS  Google Scholar 

  5. L. TaBar, B. Vitak, H. H. Chen, M. F. Yen, S. W. Duffy and R. A. Smith, Cancer 91, 1724 (2001).

    Article  Google Scholar 

  6. T. Wu et al., Med. Phys. 30, 365 (2003)

    Article  Google Scholar 

  7. J. G. Choi, H. S. Park, Y. S. Kim, Y. W. Choi, T. H. Ham and H. J. Kim, J. Korean Phys. Soc. 60, 521 (2012).

    Article  ADS  Google Scholar 

  8. B. Zhao and W. Zhao, Med. Phys. 35, 5219 (2008).

    Article  Google Scholar 

  9. T. Wu, J. Zhang, R. Moore, E. Rafferty, D. Kopans, W. Meleis and D. Kaeli, Proc. SPIE 5368, 1 (2004).

    Article  ADS  Google Scholar 

  10. T. Wu, R. H. Moore, E. A. Rafferty and D. B. Kopans, Med. Phys. 31, 2636 (2004).

    Article  Google Scholar 

  11. M. Das, H. C. Gifford, J. M. O’Connor and S. J. Glick, Med. Phys. 36, 1976 (2009).

    Article  Google Scholar 

  12. A. Karellas, J. Y. Lo and C. G. Orton, Med. Phys. 35, 409 (2008).

    Article  Google Scholar 

  13. J. Zhou, B. Zhao and W. Zhao, Med. Phys. 34, 1098 (2007).

    Article  MathSciNet  Google Scholar 

  14. A. S. Chawla, E. Samei, R. S. Saunders, J. Y. Lo and J. A. Baker, Med. Phys. 35, 1337 (2008).

    Article  Google Scholar 

  15. A. S. Chawla, J. Y. Lo, J. A. Baker and E. Samei, Med. Phys. 36, 4859 (2009).

    Article  Google Scholar 

  16. I. Reiser and R. M. Nishikawa, Med. Phys. 37, 1591 (2010).

    Article  Google Scholar 

  17. I. Sechopoulos and C. Ghetti, Med. Phys. 35, 1199 (2009).

    Article  Google Scholar 

  18. I. Sechopoulos, S. Suryanarayanan, S. Vedantham, C. D’Orsi and A. Karellas, Med. Phys. 34, 221 (2007).

    Article  Google Scholar 

  19. I. Sechopoulosm and C. D’Orsi, Med. Phys. 9, 161 (2008).

    Google Scholar 

  20. S. Sotthivirat and J. A. Fessler, IEEE Trans. Image Process. 11, 306 (2002).

    Article  ADS  Google Scholar 

  21. Y. Zhang, H. P. Chan, B. Sahiner, J. Wei, M. M. Coodsitt, L. M. Hadjiiski, J. Ge and C. Zhou, Med. Phys. 33, 3781 (2006).

    Article  Google Scholar 

  22. Y. H. Hu, B. Zhao and W. Zhao, Med. Phys. 35, 5242 (2008).

    Article  Google Scholar 

  23. L. Baojun, B. A. Gopal, U. Renuka, W. E. Jeffrey and E. H. Bernhard, Int. Congr. Ser. 1268, 13 (2004).

    Article  Google Scholar 

  24. G. M. James, A. K. Bloomquist, M. P. Kempston and M. J. Yaffe, Med. Phys. 33, 3159 (2006).

    Article  Google Scholar 

  25. J. A Gersh, D. B. Wiant, R. C. Best, M. C. Bennett, M. T. Munley, J. D. King, M. M. McKee and A. H. Baydush, J. Appl. Clin. Med. Phys. 11, 181 (2010).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hee-Joung Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choi, YW., Park, HS., Kim, Ys. et al. Effect of acquisition parameters on digital breast tomosynthesis: Total angular range and number of projection views. Journal of the Korean Physical Society 61, 1877–1883 (2012). https://doi.org/10.3938/jkps.61.1877

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.61.1877

Keywords

Navigation