Skip to main content
Log in

MTR and In-vivo 1H-MRS studies on mouse brain with parkinson’s disease

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

The aim of this study was to investigate whether the changes in the magnetization transfer ratio (MTR) histogram are related to specific characteristics of Parkinson’s disease (PD) and to investigate whether the MTR histogram parameters are associated with neurochemical dysfunction by performing in vivo proton magnetic resonance spectroscopy (1H-MRS). MTR and in vivo 1H-MRS studies were performed on control mice (n = 10) and 1-methyl-1,2,3,6-tetrahydropyridine intoxicated mice (n = 10). All the MTR and in vivo 1H-MRS experiments were performed on a 9.4 T MRI/MRS system (Bruker Biospin, Germany) using a standard head coil. The protondensity fast spin echo (FSE) images and the T2-weighted spin echo (SE) images were acquired with no gap. Outer volume suppression (OVS), combined with the ultra-short echo-time stimulated echo acquisition mode (STEAM), was used for the localized in-vivo 1H-MRS. The quantitative analysis of metabolites was performed from the 1H spectra obtained in vivo on the striatum (ST) by using jMRUI (Lyon, France). The peak height of the MTR histograms in the PD model group was significantly lower than that in the control group (p < 0.05). The midbrain MTR values for volume were lower in the PD group than the control group(p < 0.05). The complex peak (Glx: glutamine+glutamate+ GABA)/creatine (Cr) ratio of the right ST in the PD group was significantly increased as compared to that of the control group. The present study revealed that the peak height of the MTR histogram was significantly decreased in the ST and substantia nigra, and a significant increase in the Gl x /Cr ratio was found in the ST of the PD group, as compared with that of the control group. These findings could reflect the early phase of neuronal dysfunction of neurotransmitters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. K. Meshul, N. Emre, C. M. Nakamura, C. Allen, M. K. Donohue and J. F. Buckman, Neuroscience 88, 1 (1999).

    Article  Google Scholar 

  2. W. J. Schmidt, Amino Acids 14, 5 (1998).

    Article  Google Scholar 

  3. A. Antonini, K. L. Leenders, D. Meier, W. H. Oertel, P. Boesiger and M. Anliker, Neurology 43, 697 (1993).

    Article  Google Scholar 

  4. J. P. Bolam, J. J. Hanley, P. A. Booth and M. D. Bevan, J. Anat. 196, 527 (2000).

    Article  Google Scholar 

  5. W. Dauer and S. Przedborski, Neuron 39, 889 (2003).

    Article  Google Scholar 

  6. M. E. Emborg, J. Neurosci. Methods 139, 121 (2004).

    Article  Google Scholar 

  7. R. M. Dijkhuizen and K. Nicolay, J. Cerebr. Blood F. Met. 23, 1383 (2003).

    Article  Google Scholar 

  8. D. J. Brooks, J. Neurol. 247, II11 (2000).

    Article  Google Scholar 

  9. H. Hanyu, T. Asano, H. Sakurai, T. Iwamoto, M. Takasaki, H. Shindo and K. Abe, J. Neurol. Sci. 85, 166 (1999).

    Google Scholar 

  10. K. Seppi and M. F. Schocke, Curr. Opin. Neurol. 18, 370 (2005).

    Article  Google Scholar 

  11. S. D. Wolff and R. S. Balaban, Magn. Reson. Med. 10, 135 (1989).

    Article  Google Scholar 

  12. J. R. Meyer, R. W. Androux, N. Salamon, B. Rabin, C. Callahan, T. B. Parrish, J. Prager and E. J. Russell, Am. J. Neuroradiol. 18, 1515 (1997).

    Google Scholar 

  13. H. Hanyu, T. Asano, T. Iwamoto, M. Takasaki, H. Shindo and K. Abe, Am. J. Neuroradiol. 21, 1235 (2000).

    Google Scholar 

  14. W. M. van der Flier, D. M. J. van den Heuvel, A. W. E. Weverling-Rijnsburger, E. L. E. M. Bollen, R. G. J. Westendorp, M. A. van Buchem and H. A. M. Middelkoop, Ann. Neurol. 52, 62 (2002).

    Article  Google Scholar 

  15. N. J. Kabani, J. G. Sled, A. Shuper and H. Chertkow, Magn. Reson. Med. 47, 143 (2002).

    Article  Google Scholar 

  16. R. Gruetter, Magn. Reson. Med. 29, 804 (1993).

    Article  Google Scholar 

  17. I. Tkac, Z. Starcuk, I. Y. Choi and R. Gruetter, Magn. Reson. Med. 41, 649 (1999).

    Article  Google Scholar 

  18. P. G. Henry, P. F. van de Moortele, E. Giacomini, A. Nauerth and G. Bloch, Magn. Reson. Med. 42, 636 (1999).

    Article  Google Scholar 

  19. A. Naressi, C. Couturier, J. M. Devos, M. Janssen, C. Mangeat, R. de Beer and D. Graveron-Demilly, Magn. Reson. Mater. Phys. 12, 141 (2001).

    Google Scholar 

  20. S. van Huffel, H. Chen, C. Decanniere and P. van Hecke, J. Magn. Reson. 110, 228 (1994).

    Article  Google Scholar 

  21. M. Podell, M. Hadjiconstantinou, M. A. Smith and N. H. Neff, Exp. Neurol. 179, 159 (2003).

    Article  Google Scholar 

  22. M. T. Taber and H. C. Fibiger, Neuropsychopharmacol. 9, 271 (1993).

    Google Scholar 

  23. M. T. Taber and H. C. Fibiger, J. Neurosci. 15, 3896 (1995).

    Google Scholar 

  24. C. W. Olanow, Trends Neurosci. 16, 439 (1993).

    Article  Google Scholar 

  25. D. T. Dexter, C. J. Carter and F. R. Wells, J. Neurochem. 52, 381 (1989).

    Article  Google Scholar 

  26. K. A. Jellinger, Adv. Neurol. 86, 55 (2001).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yoon, MH., Kim, HJ., Chung, JY. et al. MTR and In-vivo 1H-MRS studies on mouse brain with parkinson’s disease. Journal of the Korean Physical Society 61, 1852–1859 (2012). https://doi.org/10.3938/jkps.61.1852

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.61.1852

Keywords

Navigation