Skip to main content
Log in

Charge-exchange and charge-conserving reactions on Mg, Ar, Zr, and Sn isotopes

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

We investigate charge-exchange reactions (CEXRs) and charge-conserving reactions (CCORs) on Mg, Ar, Zr, and Sn isotopes by comparing our theoretical results to relevant experimental data on stable nuclei. As for CEXRs, first, we discuss nuclear beta decay because it may give more convincing input data on the network calculations for successive capture reactions by protons and neutrons. Second, we address the importance of the Gamow Teller (GT) states that are low-lying excited states well known in the conventional nuclear physics while high-lying excited states still remain to be studied. The third topic, which is viable through the CCORs, is the symmetry energy associated with the equation of state of nuclear matter. By using the CCORs, we can study the isoscalar giant dipole resonance (ISGDR) and the pigmy dipole resonance (PDR). We discuss theoretical results regarding these CEXRs and CCORs on 26Mg, 40Ar, 90,92Zr, and 112∼124Sn and compare them with available experimental data. Our calculations are carried out by using the proton-neutron quasi-particle random phase approximation (pnQRPA), the QRPA, the deformed QRPA (DQRPA), the shell model and a hybrid model. Our results are shown to agree with the data available. These nuclear reactions considered in this report will complement capture reactions by protons and neutrons which are of vital importance for understanding the element abundances in the cosmos.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Dunkley et al., [WMAP Collaboration], Astrophys. J. Suppl. 180, 306 (2009); D. Larson et al., [WMAP Collaboration], Astrophys. J. Suppl. 192, 16 (2011).

    Article  ADS  Google Scholar 

  2. C. Blake et al., Mon. Not. Roy. Astron. Soc. 418, 1707, (2011).

    Article  ADS  Google Scholar 

  3. M. -K. Cheoun, T. Kajino, M. Kusakabe and Grant J. Mathews, Phys. Rev. D 84, 043001 (2011).

    Article  ADS  Google Scholar 

  4. A. S. Dighe and A. Y. Smirnov, Phys. Rev. D 62, 033007 (2000).

    Article  ADS  Google Scholar 

  5. A. Curioni, Nucl. Phys. Proc. Suppl. B 159, 69 (2006).

    Article  ADS  Google Scholar 

  6. W. A. Fowler, Rev. Mod. Phys. 56, 149 (1984).

    Article  ADS  Google Scholar 

  7. G. Wallerstein et al., Rev. Mod. Phys. 69, 995 (1997).

    Article  ADS  Google Scholar 

  8. A. Byelikov et al., Phys. Rev. Lett. 98, 082501 (2007).

    Article  ADS  Google Scholar 

  9. T. Hayakawa, T. Kajino, S. Chiba and G. J. Mathews, Phys. Rev. C 81, 052801(R) (2010).

    Article  ADS  Google Scholar 

  10. M. -K. Cheoun, E. Ha, T. Hayakawa, T. Kajino and S. Chiba, Phys. Rev. C 82, 035504 (2010).

    Article  ADS  Google Scholar 

  11. A. Heger, E. Kolbe, W. C. Haxton, K. Langanke, G. Martínez-Pinedo and S. E. Woosley, Phys. Lett. B 606, 258 (2005).

    Article  ADS  Google Scholar 

  12. S. Wanajo, Astrophys. J. 647, 1323 (2006).

    Article  ADS  Google Scholar 

  13. T. Yoshida, T. Suzuki, S, Chiba, T. Kajino, H. Yokomukura, K. Kimura, A. Takamura and H. Hartmann, Astrophys. J. 686, 448 (2008).

    Article  ADS  Google Scholar 

  14. G. Vedrenne and J.-L. Atteia, Gamma-Ray Bursts: The brightest Explosions in the Universe (Springer/Praxis Books, ISBN 978-3-540-39085-5, 2009).

  15. J. J. Cowan and C. Sneden, Nature 440, 1151 (2006).

    Article  ADS  Google Scholar 

  16. T. Hayakawa, N. Iwamoto, T. Shizuma, T. Kajino, H. Umeda and K. Nomoto, Phys. Rev. Lett. 93, 161102 (2004).

    Article  ADS  Google Scholar 

  17. S. Nishimura et al., Phys. Rev. Lett. 106, 052502 (2011).

    Article  ADS  Google Scholar 

  18. P. Möller et al., At. Data and Nucl. Data Tables 66, 131 (1997).

    Article  ADS  Google Scholar 

  19. P. Haensel and J. L. Zdunik, Nucl. Phys. Proc. Suppl. B 24, 139, (1991).

    Article  ADS  Google Scholar 

  20. T. Wakasa et al., Phys. Rev. C 55, 2909 (1997).

    Article  ADS  Google Scholar 

  21. K. Yako et al., Phys. Lett. B 615, 193 (2005).

    Article  ADS  Google Scholar 

  22. R. G. T. Zegers et al., Phys. Rev. C 74, 024309 (2006).

    Article  ADS  Google Scholar 

  23. G. F. Bertsch and I. Hamamoto, Phys. Rev. C 26, 1323 (1982).

    Article  ADS  Google Scholar 

  24. I. Hamamoto and H. Sagawa, Phys. Rev. C 62, 024319 (2000).

    Article  ADS  Google Scholar 

  25. G. A. Rijsdijk, W. J. W. Geurts, M. G. E. Brand, K. Allaart and W. H. Dickhoff, Phys. Rev. C 48, 1752 (1993).

    Article  ADS  Google Scholar 

  26. D. A. Krakauer et al., Phys. Rev. C 45, 2450 (1992); R. C. Allen et al., Phys. Rev. Lett. 64, 1871 (1990).

    Article  ADS  Google Scholar 

  27. C. Athanassopoulos et al., Phys. Rev. C 56, 2806 (1997); M. Albert et al., ibid 51, R1065 (1995).

    Article  ADS  Google Scholar 

  28. R. Lazauskas, A. B. Balantekin, J. H. de Jesus and C. Volpe, Phys. Rev. D 76, 053006 (2007).

    Article  ADS  Google Scholar 

  29. Z. Xiao, B.-A. Li, L.-W. Chen, G.-C. Yong and M. Zhang, Phys. Rev. Lett. 102, 062502 (2009).

    Article  ADS  Google Scholar 

  30. C. J. Horowitz, S. J. Pollock, P. A. Souder and R. Michaels, Phys. Rev. C 63, 025501 (2001).

    Article  ADS  Google Scholar 

  31. S. Abrahamyan et al., JLAB-PHY-12-1480, arXiv:1201.2568 [nucl-ex] (2011). 2568 [nucl-ex] (2011).

  32. N. Nishimura, T. Kajino, G. J. Mathews, S. Nishimura and T. Suzuki Phys. Rev. C 85, 048801 (2012).

    Article  ADS  Google Scholar 

  33. K. Langanke and C. A. Barnes, Advances in Nuclear Physics (Springer, 1996), Vol. 22, p. 173; A. Apra hamian, K. Langanke and M. Wischer, Prog. Part. Nucl. Phys. 54, 535 (2005).

  34. E. Kolbe, K. Langanke, G Martínez-Pinedo and P. Vogel, J. Phys. G 29, 2569 (2003).

    Article  ADS  Google Scholar 

  35. W. L. Freedman and M. S. Turner, Rev. Mod. Phys. 75, 1433 (2003).

    Article  ADS  Google Scholar 

  36. S. E. Woosley, D. H. Hartmann, R. D. Hoffmann and W. C. Haxton, Astrophys. J. 356, 272 (1990).

    Article  ADS  Google Scholar 

  37. T. A. Thompson, A. Burrows and P. A. Pinto, Astrophys. J. 592, 434 (2003).

    Article  ADS  Google Scholar 

  38. T. Suzuki, S. Chiba, T. Yoshida, T. Kajino and T. Otsuka, Phys. Rev. C 74, 034307 (2006).

    Article  ADS  Google Scholar 

  39. T. Suzuki et al., Phys. Rev. C 79, 061603(R) (2009).

    ADS  Google Scholar 

  40. B. -A. Li, L.-W. Chen and C. M. Ko, Phys. Rep. 464, 113 (2008).

    Article  ADS  Google Scholar 

  41. J. Piekarewicz and M. Centelles, Phys. Rev. C 79, 054311 (2009).

    Article  ADS  Google Scholar 

  42. K. Kim and H. K. Lee, arXiv:0909.1398v2 [astro-ph.HE] (2009).

  43. J. Piekarewicz, Phys. Rev. C 73, 044325 (2006).

    Article  ADS  Google Scholar 

  44. M. Prakash, I. Bombaci, M. Prakash, P. J. Ellis, J. M. Lattimer and R. Knorren, Phys. Rep. 280, 1 (1997).

    Article  ADS  Google Scholar 

  45. J. Terasaki, J. Engel, M. Bender, J. Dobaczewski, W. Nazarewicz and M. Stoitsov, Phys. Rev. C 71, 034310 (2005).

    Article  ADS  Google Scholar 

  46. O. Civitarese, A. G. Dumrauf, M. Reboiro, P. Ring and M. M. Sharma, Phys. Rev. C 43, 2622 (1991).

    Article  ADS  Google Scholar 

  47. J. Li, G. Colò and J. Meng, Phys. Rev. C 78, 064304 (2008).

    Article  ADS  Google Scholar 

  48. E. Khan, J. Margueron, G. Colò, K. Hagino and H. Sagawa, Phys. Rev. C 82, 024322 (2010).

    Article  ADS  Google Scholar 

  49. K. Yoshida, Phys. Rev. C 82, 034324 (2010).

    Article  ADS  Google Scholar 

  50. J. Li, B. Y. Sun and J. Meng, arXiv:0910.4057v1 [nuclth] (2009).

  51. A. Klimkiewicz et al., Phys. Rev. C 76, 051603(R) (2007).

    Article  ADS  Google Scholar 

  52. N. Paar, D. Vretenar and P. Ring, Phys. Rev. Lett. 94, 182501 (2005).

    Article  ADS  Google Scholar 

  53. H. Sagawa and T. Suzuki, Phys. Rev. C 59, 3116 (1999).

    Article  ADS  Google Scholar 

  54. P. Ring, Prog. Part. Nucl. Phys. 37, 193 (1996).

    Article  ADS  Google Scholar 

  55. K. Neergård, Phys. Rev. C 80, 044313 (2009).

    Article  ADS  Google Scholar 

  56. P. Vogel, Nucl. Phys. A 662, 148 (2000).

    Article  ADS  Google Scholar 

  57. N. Paar, D. Vretenar, T. Marketin and P. Ring, Phys. Rev. C 77, 024608 (2008).

    Article  ADS  Google Scholar 

  58. M. -K. Cheoun, E. Ha, S. Y. Lee, K. S. Kim, W. Y. So and T. Kajino, Phys. Rev. C 81, 028501 (2010).

    Article  ADS  Google Scholar 

  59. M. -K. Cheoun, E. Ha, K. S. Kim and T. Kajino, J. Phys. G 37, 055101 (2010).

    Article  ADS  Google Scholar 

  60. M. -K. Cheoun, E. Ha and T. Kajino, Phys. Rev. C 83, 028801 (2011).

    Article  ADS  Google Scholar 

  61. C. Volpe, N. Auerbach, G. Colò, T. Suzuki and N. Van Giai, Phys. Rev. C 62 015501 (2000).

    Article  ADS  Google Scholar 

  62. M. K. Cheoun, A. Bobyk, A. Faessler, F. Šimkovic and G. Teneva, Nucl. Phys. A 561, 74 (1993); Nucl. Phys. A 564, 329 (1993); M. K. Cheoun, A. Faessler, F. Šimkovic and G. Teneva, Prog. Part. Nucl. Phys. 32, 315 (1994); M. K. Cheoun, A. Faessler, F. Šimkovic, G. Teneva and A. Bobyk, Nucl. Phys. A 587, 301 (1995).

    Article  ADS  Google Scholar 

  63. J. Suhonen, From Nucleons and to Nucleus, TMP series (Springer, 2007).

  64. M. S. Yousef, V. Rodin, A. Faessler and F. Simkovic, Phys. Rev. C 79, 014314 (2009).

    Article  ADS  Google Scholar 

  65. F. Šimkovic, L. Pacearescu and A. Faessler, Nucl. Phys. A 733, 321 (2004).

    Article  ADS  Google Scholar 

  66. E. Ha and M.-K. Cheoun, in The 10th International Symposium on Origin of Matter and Evolution of Galaxies, edited by I. Tanihara et al. (AIP, New York, 2010), p. 351.

    Google Scholar 

  67. E. Ha and M.-K. Cheoun, arXiv:1205.4561 [nucl-th], (2012).

  68. L. Zhao and B. A. Brown, Phys. Rev. C 47, 2641 (1993).

    Article  ADS  Google Scholar 

  69. A. Etchegoyen, W. D. M. Rae, N. S. Godwin, W. A. Richter, C. H.. Zimmerman, B. A. Brown, W. E. Ormand and J. S. Winfield, MSU-NSCL Report No. 524, 1985.

  70. A. E. Mattsson, Science 298, 759 (2002).

    Article  Google Scholar 

  71. J. Engel, Phys. Rev. C 75, 014306 (2007).

    MathSciNet  ADS  Google Scholar 

  72. T. Nikšić, D. Vretenar and P. Ring, Prog. Part. Nucl. Phys. 66, 519 (2011).

    Article  ADS  Google Scholar 

  73. S. M. Grimes et al., Phys. Rev. C 53, 2709 (1996).

    Article  ADS  Google Scholar 

  74. M. -K. Cheoun, E. Ha, T. Hayakawa, S. Chiba, K. Nakamura, T. Kajino and Grant J. Mathews, Phys. Rev. C 85, 065807 (2012).

    Article  ADS  Google Scholar 

  75. M. Bhattacharya, C. D. Goodman and A. García, Phys. Rev. C 80, 055501 (2009).

    Article  ADS  Google Scholar 

  76. G. A. Lalazissis, S. Raman and P. Ring, At. Data Nucl. Data Tables 71, 1 (1999).

    Article  ADS  Google Scholar 

  77. T. W. Donnelly and W. C. Haxton, At. Data Nucl. Data Tables 23, 103 (1979).

    Article  ADS  Google Scholar 

  78. J. D. Walecka, Muon Physics, edited by V. H. Huges and C. S. Wu (Academic, New York, 1975), Vol. 2.

    Google Scholar 

  79. C. Volpe, J. Phys. G 34, R1 (2007).

    Article  ADS  Google Scholar 

  80. A. Bortrungo and G. Co’, Eur. Phys. J. A 24, 109 (2005).

    Google Scholar 

  81. G. Co’, Acta Phys. Pol. B 37, 2235 (2006).

    ADS  Google Scholar 

  82. J. Engel, Phys. Rev. C 57, 2004 (1998).

    Article  ADS  Google Scholar 

  83. A. Rubbia, Nucl. Phys. Proc. Suppl. B 66, 436 (1998).

    Article  ADS  Google Scholar 

  84. I. Gil-Botella and A. Rubbia, arXiv:hep-ph/0307244v2, Revised Feb.7, (2008).

  85. I. Gil-Botella and A. Rubbia, J. Cosmol. Astropart. Phys. 10, 009 (2003).

    Article  ADS  Google Scholar 

  86. W. E. Ormand, P. M. Puzzochero, P. F. Bortignon and R. A. Broglia, Phys. Lett. B 345, 343 (1995).

    Article  ADS  Google Scholar 

  87. E. K. Warburton, Phys. Rev. C 44, 268 (1991).

    Article  ADS  Google Scholar 

  88. M. S. Athar, S. Ahmad and S. K. Singh, Nucl. Phys. A 764, 551 (2006).

    Article  ADS  Google Scholar 

  89. J. P. Schiffer et al., Phys. Rev. Lett. 92, 162501 (2004).

    Article  ADS  Google Scholar 

  90. G. Colò, H. Sagawa, S. Fracasso and P. F. Bortignon, Phys. Lett. B 646, 227 (2007).

    Article  ADS  Google Scholar 

  91. B. Cederwall et al., Nature 469, 68 (2011).

    Article  ADS  Google Scholar 

  92. T. Li et al., Phys. Rev. Lett. 99, 162503 (2007)..

    Article  ADS  Google Scholar 

  93. D. H. Youngblood et al., Phys. Rev. C 69, 034315 (2004).

    Article  ADS  Google Scholar 

  94. Y. -W. Lui, D. H. Youngblood, Y. Tokimoto, H. L. Clark and B. John, Phys. Rev. C 70, 014307 (2004).

    Article  ADS  Google Scholar 

  95. M. Centelles, S. K. Partra, X. Roca-Maza, B. K. Sharma, P. D. Stevenson and X Viñas, J. Phys. G 37, 075107 (2010).

    Article  ADS  Google Scholar 

  96. Y. Shimbara et al., in The 10th International Symposium on Origin of Matter and Evolution of Galaxies, edited by I. Tanihara et al. (AIP, New York, 2010), p. 201.

    Google Scholar 

  97. M. -K. Cheoun, E. Ha and T. Kajino, in The 11th International Symposium on Origin of Matter and Evolution of Galaxies, edited by T. Kajino and T. Hayakawa et al. (AIP, New York, 2012).

    Google Scholar 

  98. T. Suda et al., Phys. Rev. Lett. 102, 102501 (2009).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Y. So.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheoun, MK., Ha, E., Choi, K. et al. Charge-exchange and charge-conserving reactions on Mg, Ar, Zr, and Sn isotopes. Journal of the Korean Physical Society 61, 1766–1785 (2012). https://doi.org/10.3938/jkps.61.1766

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.61.1766

Keywords

Navigation