Skip to main content

Current-driven switching property of MgO-based magnetic tunnel junctions with a CoFeB free layer with in-plane magnetization

Abstract

Spin-transfer torque enables magnetization switching by passing a spin-polarized current through nanostructures of spin valves or magnetic tunnel junctions. In this study, current-driven switching is investigated for magnetic tunnel junctions with a CoFeB free layer having in-plane magnetization. The critical switching current is found to depend on the feature of the switching modes and on the junction geometries. Especially, long-pulse mode switching generates equilibrium remnant magnetization states before complete magnetization reversal, which results in robust switching by reducing the local magnetization anomalies. The current-driven switching can be understood by using the combined effects of spin transfer and thermal activation.

This is a preview of subscription content, access via your institution.

References

  1. S. Mangin, D. Ravelosona, J. A. Katine, M. J. Carey, B. D. Terris and E. E. Fullerton, Nat. Mater. 5, 210 (2006).

    ADS  Article  Google Scholar 

  2. H. Meng and J.-P. Wang, Appl. Phys. Lett. 88, 172506 (2006).

    ADS  Article  Google Scholar 

  3. T. Kishi et al., IEDM Technical Digest, 309 (2008).

  4. M. Vazquez and C. Gomez-Polo, J. Korean Phys. Soc. 31, 471 (1997).

    Google Scholar 

  5. S. S. P. Parkin et al., J. Appl. Phys. 85, 5828 (1999).

    ADS  Article  Google Scholar 

  6. X. Zhu and S. H. Kang, J. Appl. Phys. 106, 113906 (2009).

    ADS  Article  Google Scholar 

  7. J. Ma, J. Hu, Z. Li and C.-W. Nan, Adv. Mater. 23, 1062 (2011).

    Article  Google Scholar 

  8. R. J. M. van de Veerdonk, G. Ju, E. B. Svedberg, D. Weller, S. Tamaru, J. T. Wolfson and J. A. Bain, J. Magn. Magn. Mater. 235, 138 (2001).

    ADS  Article  Google Scholar 

  9. M. H. Kryder and R. W. Gustafson, J. Magn. Magn. Mater. 287, 449 (2005).

    ADS  Article  Google Scholar 

  10. H. Suh and K. Lee, Curr. Appl. Phys. 9, 985 (2009).

    ADS  Article  Google Scholar 

  11. J. C. Slonczewski, J. Magn. Magn. Mater. 159, L1 (1996).

    ADS  Article  Google Scholar 

  12. L. Berger, Phys. Rev. B 54, 9353 (1996).

    ADS  Article  Google Scholar 

  13. Y. Huai, F. Albert, P. Nguyen, M. Pakala and T. Valet, Appl. Phys. Lett. 84, 3118 (2004).

    ADS  Article  Google Scholar 

  14. J. C. Slonczewski, Phys. Rev. B 71, 024411 (2005).

    ADS  Article  Google Scholar 

  15. J. G. Zhu and C. Park, Mater. Today 9, 36 (2006).

    Article  Google Scholar 

  16. S. X. Huang, T. Y. Chen and C. L. Chien, Appl. Phys. Lett. 92, 242509 (2008).

    ADS  Article  Google Scholar 

  17. Z. Diao et al., Appl. Phys. Lett. 90, 132508 (2007).

    ADS  Article  Google Scholar 

  18. J. Hayakawa, S. Ikeda, Y. M. Lee, R. Sasaki, T. Meguro, F. Matsukura, H. Takahashi and H. Ohno, Jpn. J. Appl. Phys. 45, L1057 (2006).

    ADS  Article  Google Scholar 

  19. J. Hayakawa et al., IEEE Trans. Magn. 44, 1962 (2008).

    ADS  Article  Google Scholar 

  20. C. Y. You, Curr. Appl. Phys. 10, 952 (2010).

    ADS  Article  Google Scholar 

  21. K. J. Lee, W. Park and T. Kim, IEEE Trans. Magn. 39, 2842 (2003).

    ADS  Article  Google Scholar 

  22. U.-H. Pi, S.-C. Lee, K.-S. Kim, K. Kim, J.-K. Shin and U. Chung, Appl. Phys. Lett. 98, 242509 (2011).

    ADS  Article  Google Scholar 

  23. D. Watanabe, M. Oogane, S. Mizukami, Y. Ando and T. Miyazaki, Jpn. J. Appl. Phys. 48, 013001 (2009).

    ADS  Article  Google Scholar 

  24. T. Kawahara et al., IEEE J. Solid-State Circuits 43, 109 (2008).

    Article  Google Scholar 

  25. J. G. Simmons, J. Appl. Phys. 34, 1793 (1963).

    ADS  Article  Google Scholar 

  26. R. Heindl, S. E. Russek, T. J. Silva, W. H. Rippard, J. A. Katine and M. J. Carey, Appl. Phys. Lett. 92, 262504 (2008).

    ADS  Article  Google Scholar 

  27. R. H. Koch, J. A. Katine and J. Z. Sun, Phys. Rev. Lett. 92, 088302 (2004).

    ADS  Article  Google Scholar 

  28. X. Zhu and S. Kang, J. Appl. Phys. 105, 07D125 (2009).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wanjun Park.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kil, J.P., Bae, G.Y., Suh, D.I. et al. Current-driven switching property of MgO-based magnetic tunnel junctions with a CoFeB free layer with in-plane magnetization. Journal of the Korean Physical Society 61, 1596–1599 (2012). https://doi.org/10.3938/jkps.61.1596

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.61.1596

Keywords

  • Magnetic tunnel junction
  • Current-driven switching
  • Spin-transfer torque
  • MTJ switching
  • Switching stability
  • Thermal activation of magnetization switching