Skip to main content
Log in

Particle deposition on face-up flat plates in parallel airflow under the combined influences of thermophoresis and electrophoresis

  • Research Papers
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

The deposition velocity is used to assess the degree of particulate contamination of wafers or photomasks. A numerical model was developed to predict the deposition velocity under the combined influences of thermophoresis and electrophoresis. The deposition velocity onto a face-up flat plate in parallel airflow was simulated by varying the temperature difference between the plate’s surface and ambient air or by changing the strength of the electric field established above the plate. Both attraction and repulsion by thermophoresis or electrophoresis were considered. When the plate’s surface was colder than ambient air, the surface of the face-up plate could be at risk of contamination by charged particles even with a repulsive applied electric force. When the temperature of the plate’s surface was higher than the ambient temperature, the degree of particulate contamination on the surface of the face-up plate could be remarkably reduced in the presence of an electric field. The effect of repulsive thermophoresis, however, is expected to be reduced for very fine particles of high electric mobility or for micrometer-sized particles with large gravitational settling speed when the charged particles are influenced by an attractive electric force.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Hamamoto, Y. Tanaka, T. Watanabe, N. Sakaya, M. Hosoya, T. Shoki, H. Hada, N. Hishinuma, H. Sugahara and H. Kinoshita, J. Vac. Sci. Technol., B 23, 247 (2005).

    Article  Google Scholar 

  2. L. Belau, J. Y. Park, T. Liang, H. T. Seo and G. A. Somorjai, J. Vac. Sci. Technol., B 27, 1919 (2009).

    Article  Google Scholar 

  3. S. J. Yook, H. Fissan, C. Asbach, J. H. Kim, D. D. Dutcher, P. Y. Yan and D. Y. H. Pui, IEEE Trans. Semicond. Manuf. 20, 578 (2007).

    Article  Google Scholar 

  4. B. Y. H. Liu and K. H. Ahn, Aerosol Sci. Technol. 6, 215 (1987).

    Article  Google Scholar 

  5. D. Y. H. Pui, Y. Ye and B. Y. H. Liu, Aerosol Sci. Technol. 12, 795 (1990).

    Article  Google Scholar 

  6. G. N. Bae, C. S. Lee and S. O. Park, Aerosol Sci. Technol. 21, 72 (1994).

    Article  Google Scholar 

  7. Y. Otani, H. Emi, C. Kanaoka and K. Kato, J. Aerosol Sci. 20, 787 (1989).

    Article  Google Scholar 

  8. Y. Ye, D. Y. H. Pui, B. Y. H. Liu, S. Opiolka, S. Blumhorst and H. Fissan, J. Aerosol Sci. 22, 63 (1991).

    Article  Google Scholar 

  9. S. Opiolka, F. Schmidt and H. Fissan, J. Aerosol Sci. 25, 665 (1994).

    Article  Google Scholar 

  10. G. N. Bae, C. S. Lee and S. O. Park, Aerosol Sci. Technol. 23, 321 (1995).

    Article  Google Scholar 

  11. F. Schmidt, H. Fissan and K. G. Schmidt, J. Aerosol Sci. 27, 547 (1996).

    Article  Google Scholar 

  12. R. Tsai, Y. P. Chang and T. Y. Lin, J. Aerosol Sci. 29, 811 (1998).

    Article  Google Scholar 

  13. K. H. Yoo and M. D. Oh, J. Aerosol Sci. 36, 235 (2005).

    Article  Google Scholar 

  14. S. J. Yook, H. Fissan, C. Asbach, J. H. Kim, J. Wang, P. Y. Yan and D. Y. H. Pui, J. Aerosol Sci. 38, 211 (2007).

    Article  Google Scholar 

  15. S. J. Yook and K. H. Ahn, Appl. Phys. Lett. 94, 191909 (2009).

    Article  ADS  Google Scholar 

  16. S. J. Yook, H. J. Hwang, K. S. Lee and K. H. Ahn, J. Electrochem. Soc. 157, H692 (2010).

    Article  Google Scholar 

  17. S. J. Yook, C. Asbach and K. H. Ahn, J. Aerosol Sci. 41, 911 (2010).

    Article  Google Scholar 

  18. W. J. Choi and S. J. Yook, Aerosol Sci. Technol. 44, 919 (2010).

    Article  Google Scholar 

  19. S. C. Lee and S. J. Yook, J. Electrochem. Soc. 158, H973 (2011).

    Article  Google Scholar 

  20. S. C. Lee, W. G. Kim and S. J. Yook, J. Appl. Phys. 110, 063518 (2011).

    Article  ADS  Google Scholar 

  21. W. K. Kim, S. C. Lee and S. J. Yook, J. Electrochem. Soc. 158, H1010 (2011).

    Article  Google Scholar 

  22. S. H. Woo, S. C. Lee and S. J. Yook, J. Aerosol Sci. 44, 1 (2012).

    Article  Google Scholar 

  23. FLUENT 6.3 User’s Guide, Modeling Discrete Phase, FLUENT, Inc., 2006.

  24. W. C. Hinds, Aerosol Technology, 2nd ed. (John Wiley & Sons, New York, 1999), p. 318.

    Google Scholar 

  25. P. C. Reist, Aerosol Science and Technology, 2nd ed. (McGraw-Hill, New York, 1993), p. 201.

    Google Scholar 

  26. A. Wiedensohler, J. Aerosol Sci. 19, 387 (1988).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Se-Jin Yook.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, H., Yook, SJ. & Han, S.Y. Particle deposition on face-up flat plates in parallel airflow under the combined influences of thermophoresis and electrophoresis. Journal of the Korean Physical Society 61, 1028–1036 (2012). https://doi.org/10.3938/jkps.61.1028

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.61.1028

Keywords

Navigation