Skip to main content
Log in

Optimization of a high-resolution collimator for a CdTe detector: Monte Carlo simulation studies

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

Photon counting detectors using cadmium zinc telluride (CZT) or cadmium telluride (CdTe) have benefits compared to conventional scintillation detectors, and CZT and CdTe have advantageous physical characteristics for nuclear medicine imaging. Recently, many studies have been conducted using these materials to improve the sensitivity and the spatial resolution of the photon counting detector. By using a pixelated parallel-hole collimator, we may be able to improve the sensitivity and the spatial resolution. The purpose of this study was to optimize the design of a collimator to achieve excellent resolution and high sensitivity for a gamma camera system based on the CdTe detector. In this study we simulated a gamma camera system with a photon counting detector based on CdTe and evaluated the system’s performance. We performed a simulation study of the PID 350 (Ajat Oy Ltd., Finland) CdTe detector by using a Geant4 Application for Tomographic Emission (GATE) simulation. This detector consists of small pixels (0.35 × 0.35 mm2). We designed two parallel-hole collimators with different shapes and verified their usefulness. One was the proposed pixelated parallel-hole collimator in which the hole size and the pixel size are the same, and the other was the hexagonal parallel-hole collimator, which had a hole size similar to that of the pixelated parallel-hole collimator. We evaluated the sensitivity, spatial resolution, and contrast resolution to determine which parallel-hole collimator was best for the PID 350 CdTe detector. The average sensitivity was 22.65% higher for the pixelated parallel-hole collimator than for the hexagonal parallel-hole collimator. Also, the pixelated parallel-hole collimator provided 10.7% better spatial resolution than the hexagonal parallel-hole collimator, and the contrast resolution was improved by 8.93%. These results reflect an improvement in sensitivity and spatial resolution, and indicate that the imaging performance of the pixelated parallel-hole collimator is better than that of the hexagonal parallel-hole collimator. In conclusion, we successfully established a high resolution gamma camera system with a pixelated parallel-hole collimator, and based on our results, we recommend using the pixelated parallel-hole collimator to improve the sensitivity and the spatial resolution of gamma camera systems with semiconductor detectors such as CdTe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Verger, M. C. Gentet, L. Gerfault, R. Guillemaud, C. Mestais, O. Monnet, G. Montemont, G. Petroz, J. P. Rostaing and J. Rustique, IEEE Trans. Nucl. Sci. 51, 3111 (2004).

    Article  ADS  Google Scholar 

  2. S. G. Fritz and P. M. Shikhaliev, Med. Phys. 36, 1098 (2009).

    Article  Google Scholar 

  3. S. R. Cherry, J. A. Sorenson and M. E. Phelps, Physics in Nuclear Medicine, 3rd ed. (Saunders, Philadelphia, 2003), p. 523.

    Google Scholar 

  4. G. A. Kastiz, L. R. Furenlid, D. W. Wilson, T. E. Peterson, H. B. Barber and H. H. Barrett, IEEE Trans. Nucl. Sci. 51, 63 (2004).

    Article  ADS  Google Scholar 

  5. T. Takahashi and S. Watanabe, IEEE Trans. Nucl. Sci. 48, 950 (2001).

    Article  ADS  Google Scholar 

  6. C. Scheiber and G. C. Giakos, Nucl. Instrum. Methods Phys. Res., Sect. A 458, 12 (2001).

    Article  ADS  Google Scholar 

  7. K. Ogawa, N. Ohumura, H. Iida, K. Nakamura, T. Nakahara and A. Kubo, Ann. Nucl. Med. 23, 763 (2009).

    Article  Google Scholar 

  8. K. Ogawa and M. Muraishi, IEEE Trans. Nucl. Sci. 57, 17 (2010).

    Article  ADS  Google Scholar 

  9. D. Lazaro et al., Phys. Med. Biol. 49, 271 (2004).

    Article  Google Scholar 

  10. G. Santin, S. Staelens, R. Taschereau, P. Descourt, C. R. Schmidtlein, L. Simon, D. Visviks, S. Jan and I. Buvat, Nucl. Instrum. Methods Phys. Res., Sect. A 172, 101 (2007).

    Google Scholar 

  11. S. Agostinelli et al., Nucl. Instrum. Methods Phys. Res., Sect. A 506, 253 (2003).

    Article  Google Scholar 

  12. S. Jan et al., Phys. Med. Biol. 56, 882 (2011).

    Article  Google Scholar 

  13. D. Lazaro, Z. EI. Bitar, V. Breton, D. Hill and I. Buvat, Phys. Med. Biol. 50, 3739 (2005).

    Article  Google Scholar 

  14. G. Santin, D. Strul, D. Lazaro, V. Breton and C. Morel, IEEE Trans. Nucl. Sci. 50, 1516 (2003).

    Article  ADS  Google Scholar 

  15. S. Jan et al., Phys. Med. Biol. 49, 4543 (2004).

    Article  Google Scholar 

  16. C. Robert, G. Montemont, V. Rebuffel, I. Buvat, L. Guerin and L. Verger, Phys. Med. Biol. 55, 2709 (2010).

    Article  Google Scholar 

  17. Y. N. Choi, H. M. Cho, S. W. Lee, H. J. Ryu, Y. J. Lee and H. J. Kim, J. Korean Phys. Soc. 59, 162 (2011).

    Google Scholar 

  18. T. Takahashi and S. Watanabe, IEEE Trans. Nucl. Sci. 48, 950 (2001).

    Article  ADS  Google Scholar 

  19. C. M. Hubert Chen, S. E. Boggs, A. E. Bolotnikov, W. R. Cook, F. A. Harrison and S. M. Schindler, IEEE Trans. Nucl. Sci. 49, 270 (2002).

    Article  ADS  Google Scholar 

  20. G. Pellegrini, M. Maiorino, G. Blanchot, M. Chmeissani, J. Garcia, M. Lozano, R. Martinex, C. Puigdengoles and M. Ullan, Nucl. Instrum. Methods Phys. Res., Sect. A 573, 137 (2007).

    Article  ADS  Google Scholar 

  21. S. Kimiaei and S. A. Larsson, Phys. Med. Biol. 43, 637 (1998).

    Article  Google Scholar 

  22. H. Wieczorek and A. Goedicke, IEEE Trans. Nucl. Sci. 53, 1102 (2006).

    Article  ADS  Google Scholar 

  23. A. S. Ahmed, G. H. Kramer, W. Semmler and J. Peter, Nucl. Instrum. Methods Phys. Res., Sect. A 629, 368 (2011).

    Article  ADS  Google Scholar 

  24. M. J. Park, K. S. Park, J. S. Lee, Y. K. Kim and D. S. Lee, J. Korean Phys. Soc. 55, 682 (2009).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hee-Joung Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, YJ., Ryu, HJ., Cho, HM. et al. Optimization of a high-resolution collimator for a CdTe detector: Monte Carlo simulation studies. Journal of the Korean Physical Society 60, 862–868 (2012). https://doi.org/10.3938/jkps.60.862

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.60.862

Keywords

Navigation