Skip to main content
Log in

Fabrication of boron-doped nanocrystalline diamond nanoflowers based on 3D Cu(OH)2 dendritic architectures

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

Hot-filament chemical vapor deposition (HFCVD) was used to prepare boron-doped nanocrystalline diamond (BDND) nanoflowers on a Cu substrate with a Cu(OH)2 dendritic architecture that had been formed by using electrostatic self-assembly (ESA) method with nanodiamond particles. The formation of diamond nanoflowers is controlled by the reaction time between the Cu(OH)2 nanoflowers and the polymeric linker for the electrostatic attachment of nanodiamonds and by the deposition time for CVD diamond growth with a high nucleation density. Through analysis by field emission scanning electron microscopy (FESEM) and Raman spectroscopy, the optimal conditions for the synthesis of BDND nanoflowers are determined, and a possible explanation is provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Cao, L. Su, X. Zhang and H. Li, Mater. Res. Bull. 45, 425 (2010).

    Article  Google Scholar 

  2. J. Bernholc, C. Roland and B. I Yakobson, Curr. Opin. Solid State Mater. Sci. 2, 706 (1997).

    Article  ADS  Google Scholar 

  3. N. Tokuda, H. Watanabe, D. Hojo, S. Yamasaki, K. Miki and K. Yamabe, Appl. Surf. Sci. 237, 529 (2004).

    ADS  Google Scholar 

  4. Z. R. Dai, Z. W. Pan and Z. L. Wang, J. Phys. Chem. B 106, 902 (2002).

    Article  Google Scholar 

  5. M. Zhu, J. Wang, B. C. Holloway, R. A. Outlaw, X. Zhao, K. Hou, V. Shutthanandan and D. M. Manos, Carbon 45, 2229 (2007).

    Article  Google Scholar 

  6. S. Iijima, Nature 354, 56 (1991).

    Article  ADS  Google Scholar 

  7. Z. W. Pan, Z. R. Dai and Z. L. Wang, Science 291, 1947 (2001).

    Article  ADS  Google Scholar 

  8. D. Zhuang and J. H. Edgar, Mater. Sci. Eng., R 48, 1 (2005).

    Article  Google Scholar 

  9. J. A. Switzer, H. M. Kothari, P. Poizot, S. Nakanishi and E. W. Bohannan, Nature 425, 490 (2003).

    Article  ADS  Google Scholar 

  10. D. Luo, L. Wu and J. Zhi, ACS Nano 8, 2121 (2009).

    Article  Google Scholar 

  11. M. J. Song, J. H. Kim, S. K. Lee and D. S. Lim, Anal. Sci. 27, 985 (2011).

    Article  Google Scholar 

  12. H. X. Zhang, P. X. Feng, V. Makarov, B. R. Weiner and G. Morell, Mater. Res. Bull. 44, 184 (2009).

    Article  Google Scholar 

  13. X. S. Fang, C. H. Ye, L. D. Zhang, J. X. Zhang, J. W. Zhao and P. Yan, Small 1, 422 (2005).

    Article  Google Scholar 

  14. N. Zhang, R. Yi, R. Shi, G. Gao, G. Chen and X. Liu, Mater. Lett. 63, 496 (2009).

    Article  Google Scholar 

  15. R. Verma, B. D. Gupta and R. Jha, Sens. Actuators, B 160, 623 (2011).

    Article  Google Scholar 

  16. J. Zhao, D. Wu and J. Zhi, Bioelectrochemistry 75, 44 (2009).

    Article  Google Scholar 

  17. X. MA and B. Yuan, Appl. Surf. Sci. 255, 7846 (2009).

    Article  ADS  Google Scholar 

  18. S. Thongtem, P. Singjai, T. Thongtem and S. Preyachoti, Mater. Sci. Eng., A 423, 209 (2006).

    Article  Google Scholar 

  19. S. Nath and J. I. B. Wilson, Diamond Relat. Mater. 5, 65 (1996).

    Article  ADS  Google Scholar 

  20. Y. Hao, Z. Qunfeng, W. Fei, Q. Weizhong and L. Guohua, Carbon 41, 2855 (2003).

    Article  Google Scholar 

  21. A. Chavanne, J. C. Arnaul, J. Barjon and J. Arabski, Surf. Sci. 605, 564 (2011).

    Article  ADS  Google Scholar 

  22. J. H. Kim, S. K. Lee, O. M. Kwon, S. I. Hong and D. S. Lim, Diamond Relat. Mater. 18, 1218 (2009).

    Article  ADS  Google Scholar 

  23. Z. Zhang, X. Shao, H. Yu, Y. Wang and M. Han, Chem. Mater. 17, 332 (2005).

    Article  Google Scholar 

  24. S. Jana, S. Das, N. S. Das and K. K. Chattopadhyay, Mater. Res. Bull. 45, 693 (2010).

    Article  Google Scholar 

  25. W. Zhang, S. Ding, Z. Yang, A. Liu, Y. Qian, S. Tang and S. Yang, J. Cryst. Growth 291, 479 (2006).

    Article  ADS  Google Scholar 

  26. C. Li, S. Zhang, X. Lv, H. Xia and Y. Wang, Biosens. Bioelectron. 26, 903 (2010).

    Article  Google Scholar 

  27. M. J. Song, S. W. Hwang and D. Whang, Talanta 80, 1648 (2010).

    Article  Google Scholar 

  28. R. Pfeiffer, H. Kuzmany, P. Knoll, S. Bokova, N. Salk and B. Gunther, Diamond Relat. Mater. 12, 268 (2003).

    Article  ADS  Google Scholar 

  29. S. Prawer, K. W. Nugent, D. N. Jamieson, J. O. Orwa, L. A. Bursill and J. L. Peng, Chem. Phys. Lett. 332, 93 (2000).

    Article  ADS  Google Scholar 

  30. G. H. Du and G. Van Tendeloo, Chem. Phys. Lett. 393, 64 (2004).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suk-In Hong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sim, H., Hong, SI., Lee, SK. et al. Fabrication of boron-doped nanocrystalline diamond nanoflowers based on 3D Cu(OH)2 dendritic architectures. Journal of the Korean Physical Society 60, 836–841 (2012). https://doi.org/10.3938/jkps.60.836

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.60.836

Keywords

Navigation