Skip to main content
Log in

Self-organized criticality of a simple integrate-and-fire neural model

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

We consider a simple integrate-and-fire neural model without synaptic plasticity. In this model, the membrane potential propagates to the nearest neighbor neurons when that potential is greater than a threshold value. When a neuron is fired, the propagating potential is leaky. Therefore, the sum of the received potential is less than the presynaptic potential. We simulated this simple model on a fully-connected network. We identified the critical membrane strength, J c = 4.71(1). At the critical membrane strength, we observed that the probability distribution function of the avalanche shows a power law, P(s) ≈ s −τ, with the critical exponent τ = 1.414(5). The lifetime of the avalanche also showed a power law. The power law behaviors imply that this model shows self-organized criticality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Bak, How Nature Works (Springer-Verlag, New York, 1996).

    MATH  Google Scholar 

  2. H. J. Jensen, Self-organized Criticality (Cambridge University Press, New York, 1998).

    MATH  Google Scholar 

  3. P. Bak, C. Tang and K. Wiesenfeld, Phys. Rev. Lett. 59, 381 (1987).

    Article  MathSciNet  ADS  Google Scholar 

  4. P. Bak and K. Sneppen, Phys. Rev. Lett. 74, 4083 (1993).

    Article  ADS  Google Scholar 

  5. J. Beggs and D. Plenz, J. Neurosci. 24, 5216 (2004).

    Article  Google Scholar 

  6. A. Levina, J. M. Herrmann and J. Geisel, Nat. Phys. 3, 857 (2007).

    Article  Google Scholar 

  7. J. A. Bonachela, S. de Fraciscis, J. J. Torres and M. A. Munoz, J. Stat. Mech: Theory Exp. 02, P02015 (2010).

    Article  Google Scholar 

  8. V. Pasquale, P. Massobrio, L. L. Bologna, M. Chiappalone and S. Martinoia, Neuroscience 153, 1354 (2008).

    Article  Google Scholar 

  9. C. Meisel and T. Gross, Phys. Rev. E 80, 061917 (2009).

    Article  ADS  Google Scholar 

  10. H. Markram, Y. Wang and M. Tsodyks, Proc. Natl. Acad. Sci. U.S.A. 95, 5323 (1998).

    Article  ADS  Google Scholar 

  11. A. Morrison, M. Diesmann and W. Gerstner, Biol. Cybern. 98, 459 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  12. C-F. Chen, A-C. Cheng, Y-D. Wang and C-Y. Lin, Comput. Phys. Commun. 182, 226 (2011).

    Article  ADS  MATH  Google Scholar 

  13. C-Y. Lin, C-F. Chen, C-N. Chen, C-S. Yang and I-M. Jiang, Phys. Rev. E 74, 031304 (2006).

    Article  ADS  Google Scholar 

  14. S. Lise and M. Paczuski, Phys. Rev. Lett. 88, 228301 (2002).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae Woo Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choi, H.W., Maeng, S.E. & Lee, J.W. Self-organized criticality of a simple integrate-and-fire neural model. Journal of the Korean Physical Society 60, 657–659 (2012). https://doi.org/10.3938/jkps.60.657

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.60.657

Keywords

Navigation