Skip to main content
Log in

Scaling of nestedness in complex networks

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

Nestedness characterizes the linkage pattern of networked systems, indicating the likelihood that a node is linked to the neighbors of the nodes with larger degrees than it. Networks of mutualistic relationship between distinct groups of species in ecological communities exhibit such nestedness, which is known to support the network’s robustness. Despite such importance, the quantitative characteristics of nestedness are little understood. Here, we take a graph-theoretic approach to derive the scaling properties of nestedness in various model networks. Our results show how the heterogeneous connectivity patterns enhance nestedness. Also, we find that the nestedness of bipartite networks depends sensitively on the fraction of different types of nodes, causing nestedness to scale differently for nodes of different types.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. See, e.g., M. Pascual and J. A. Dunne, Ecological Networks: Linking Structure to Dynamics in Food Webs (Oxford University Press, New York, 2005), and references therein.

    Google Scholar 

  2. R. J. Williams and N. D. Martinez, Nature 404, 180 (2000).

    Article  ADS  Google Scholar 

  3. M-F. Cattin, L-F. Bersier, C. Banasek-Richter, R. Baltensperger and J-P. Gabriel, Nature 427, 835 (2004).

    Article  ADS  Google Scholar 

  4. S. Allesina, D. Alonso and M. Pascual, Science 320, 658 (2008).

    Article  ADS  Google Scholar 

  5. J. Bascompte, P. Jordano, C. J. Melián and J. M. Olesen, Proc. Natl Acad. Sci. U.S.A. 100, 9383 (2003).

    Article  ADS  Google Scholar 

  6. J. Bascompte, P. Jordano and J. M. Olsen, Science 312, 431 (2006).

    Article  ADS  Google Scholar 

  7. J. M. Montoya, S. L. Pimm and R. V. Solé, Nature 442, 259 (2006).

    Article  ADS  Google Scholar 

  8. S. Saavedra, F. Reed-Tsochas and B. Uzzi, Nature 457, 463 (2009).

    Article  ADS  Google Scholar 

  9. U. Bastolla, M. A. Fortuna, A. Pascual-Garcia, A. Ferrera, B. Luque and J. Bascompte, Nature 458, 1018 (2009).

    Article  ADS  Google Scholar 

  10. J. Bascompte, Science 329, 765 (2010).

    Article  ADS  Google Scholar 

  11. J. K. Hwang, K. E. Lee, S. E. Maeng and J. W. Lee, J. Korean Phys. Soc. 53, 3151 (2008).

    Article  ADS  Google Scholar 

  12. S. E. Maeng and J. W. Lee, J. Korean Phys. Soc. 58, 851 (2011).

    Article  Google Scholar 

  13. W. Atmar and B. D. Patterson, Oecologia 96, 373 (1993).

    Article  Google Scholar 

  14. M. Almeida-Neto, P. Guimaräes, P. R. Guimaräes, Jr., R. D. Loyola and W. Ulrich, Öikos 117, 1227 (2008).

    Google Scholar 

  15. P. Jordano, J. Bascompte and J. M. Olsen, Ëcol. Lett. 6, 69 (2003).

    Article  Google Scholar 

  16. D. P. Vázquez, Öikos 108, 421 (2005).

    Google Scholar 

  17. P. R. Guimarães, Jr., G. Machado, M. A. M. de Aguiar, P. Jordano, J. Bascompte, A. Pinheiro and S. F. dos Reis, J. Theor. Biol. 249, 181 (2007).

    Article  Google Scholar 

  18. D. Medan, R. P. J. Perazzo, M. Devoto, E. Burgos, M. G. Zimmermann, H. Ceva and A. M. Delbue, J. Theor. Biol. 246, 510 (2007).

    Article  MathSciNet  Google Scholar 

  19. S. E. Maeng, J. W. Lee and D-S. Lee, submitted (2011).

  20. E. Thébault and C. Fontaine, Science 329, 853 (2010).

    Article  ADS  Google Scholar 

  21. K-I. Goh, B. Kahng and D. Kim, Phys. Rev. Lett. 87, 278701 (2001).

    Article  ADS  Google Scholar 

  22. D-S. Lee, K-I. Goh, B. Kahng and D. Kim, Nucl. Phys. B 696, 351 (2004).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. J-S. Lee, K-I. Goh, B. Kahng and D. Kim, Eur. Phys. J. B 49, 231 (2006).

    Article  ADS  Google Scholar 

  24. A-L. Barabási and R. Albert, Science 286, 509 (1999).

    Article  MathSciNet  Google Scholar 

  25. R. Albert and A-L. Barabási, Rev. Mod. Phys. 74, 47 (2002).

    Article  ADS  MATH  Google Scholar 

  26. E. Ravasz, A. L. Somera, D. A. Mongru, Z. N. Oltvai and A-L. Barabási, Science 297, 1551 (2002).

    Article  ADS  Google Scholar 

  27. J. Park and M. E. J. Newman, Phys. Rev. E 68, 026112 (2003).

    Article  ADS  Google Scholar 

  28. Properties of real-world ecological networks are too variable to fix the scaling relation between N and L [1].

  29. J. J. Ramasco, S. N. Dorogovtsev and R. Pastor-Satorras, Phys. Rev. E 70, 036106 (2004).

    Article  ADS  Google Scholar 

  30. M. L. Goldstein, S. A. Morris and G. G. Yen, Phys. Rev. E 71, 026108 (2005).

    Article  ADS  Google Scholar 

  31. F. Peruani, M. Choudhury, A. Mukherjee and N. Ganguly, Europhys. Lett. 79, 28001 (2007).

    Article  MathSciNet  ADS  Google Scholar 

  32. It has been shown that the approximation of the double sums in Eq. (2) by integrals may create error terms of the same order as the leading term [23].

  33. R. Pastor-Satorras, A. Vázquez and A. Vespignani, Phys. Rev. Lett. 87, 258701 (2001).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deok-Sun Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, DS., Maeng, S.E. & Lee, J.W. Scaling of nestedness in complex networks. Journal of the Korean Physical Society 60, 648–656 (2012). https://doi.org/10.3938/jkps.60.648

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.60.648

Keywords

Navigation