Journal of the Korean Physical Society

, Volume 60, Issue 2, pp 230–234 | Cite as

Characterization of a high-power piezoelectric energy-scavenging device based on PMN-PT piezoelectric single crystals

  • S. E. Moon
  • S. -K. Lee
  • Y. -G. Lee
  • K. M. Kim
  • Y. -S. Yang
  • W. S. Yang
  • J. Kim
Article

Abstract

In this paper, we present the calculations and the results for vibration-energy-scavenging performances based on a piezoelectric single-crystal beam. Using the measured mechanical damping ratio and electro-mechanical coupling coefficient of a novel cantilever structure device, we calculated the output performances and compared them with the measured results. A device based on a bimorph cantilever structure with a proof mass was designed to have a natural resonance frequency of about 60 Hz, and the energy-scavenging capability of piezoelectric single crystal was measured. The results showed that several tens of AC volts and a few milliwatts power were achieved under a 0.1 grms vibration condition. Also using this device and a commercial power management circuit, we performed Li-ion battery charging experiment.

Keywords

Vibration-energy-scavenging Piezoelectric Cantilever 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    S. R. Anton and H. A. Sodano, Smart Mater. Struct. 16, R1 (2007).ADSCrossRefGoogle Scholar
  2. [2]
    N. Verma, J. Bohorquez, J. Dawson, J. Guttag and A. P. Chandrakasan, IEEE J. Solid-State Circuits 45, 804 (2010).CrossRefGoogle Scholar
  3. [3]
    R. Bogue, Sensor Rev. 27, 7 (2007).CrossRefGoogle Scholar
  4. [4]
    L. Huang et al., Int. J. Digital Content Tech. Appl. 3, 13 (2009).Google Scholar
  5. [5]
    T-H. Chen and W-K. Shih, ETRI J. 32, 704 (2010).CrossRefGoogle Scholar
  6. [6]
    J. Lee, ETRI J. 32, 540 (2010).CrossRefGoogle Scholar
  7. [7]
    S. E. Moon, S-K. Lee, H-K. Lee, J-W. Lee, Y-S. Yang and J. Kim, J. Korean Phys. Soc. 58, 645 (2011).CrossRefGoogle Scholar
  8. [8]
    I. Kim, H. Joo, S. Jeong, M. Kim and J. Song, J. Korean Phys. Soc. 56, 370 (2010).CrossRefGoogle Scholar
  9. [9]
    S. P. Beeby, M. J. Tudor and N. M. White, Meas. Sci. Technol. 17, R175 (2006).CrossRefGoogle Scholar
  10. [10]
    D. Shen, S-Y. Choe and D-J. Kim, Jpn. J. Appl. Phys. 46, 6755 (2007).ADSCrossRefGoogle Scholar
  11. [11]
    A. Badel, A. Benayad, E. Lefeuvre, L. Lebrun, C. Richard and D. Guyomar, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53, 673 (2006).Google Scholar
  12. [12]
    J. H. Cho, R. F. Richards, D. F. Bahr and C. D. Richards, in IEEE Ultrason. Symp. (Vancouver, Canada, October 3–6, 2006), p. 485.CrossRefGoogle Scholar
  13. [13]
    J. Twiefel, B. Richter, T. Sattel and J. Wallaschek, J. Electroceramics 20, 203 (2008).CrossRefGoogle Scholar
  14. [14]
  15. [15]
    J. W. Yi, W. Y. Shih and W. H. Shih, J. Appl. Phys. 91, 1680 (2003).ADSCrossRefGoogle Scholar
  16. [16]
    S. Priya, Appl. Phys. Lett. 87, 18410 (2005).CrossRefGoogle Scholar
  17. [17]
    A. Erturk and D. J. Inman, J. Intell. Mater. Syst. Struct. 19, 1311 (2008).CrossRefGoogle Scholar
  18. [18]
    S. Roundy, P. K. Wright and J. Rabaey, Comput. Commun. 26, 1131 (2003).CrossRefGoogle Scholar
  19. [19]
    J. Ajitsaria, S. Y. Choe, D. Shen and D. J. Kim, Smart Mater. Struct. 16, 447 (2007).ADSCrossRefGoogle Scholar
  20. [20]
    M. Ferrari, V. Ferrari, D. Marioli and A. Taroni, IEEE Trans. Instrum. Meas. 55, 2096 (2006).CrossRefGoogle Scholar
  21. [21]
    C. H. Park, J. Sound Vib. 268, 115 (2003).ADSCrossRefGoogle Scholar
  22. [22]
    Q. Chen and Q. M. Wang, Appl. Phys. Lett. 86, 022905 (2005).ADSCrossRefGoogle Scholar

Copyright information

© The Korean Physical Society 2012

Authors and Affiliations

  • S. E. Moon
    • 1
  • S. -K. Lee
    • 1
  • Y. -G. Lee
    • 1
  • K. M. Kim
    • 1
  • Y. -S. Yang
    • 1
  • W. S. Yang
    • 1
  • J. Kim
    • 1
  1. 1.Electronics and Telecommunications Research InstituteDaejeonKorea

Personalised recommendations