Skip to main content
Log in

Timelike vector field dynamics in the early universe

  • Research Papers
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

We study the dynamics of a timelike vector field when the background spacetime is in an accelerating phase in the early universe. With a timelike vector field, an inflationary phase is shown to be difficult to realize, so we investigate the evolution of a vector field within a scalar field-driven inflation model. Also, we calculate the power spectrum of the vector field without considering the metric perturbations. While the time component of the vector field perturbations provides a scale invariant spectrum when ζ = 0, where ζ is a nonminimal coupling parameter, both the longitudinal and the transverse perturbations give a scale invariant spectrum when ζ = 1/6 in the absence of the coupling terms. The deviation of the power spectrum due to the coupling terms is calculated by use of the Greens’ function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Perlmutter et al. [Supernova Cosmology Project Collaboration], Astrophys. J. 517, 565 (1999); A. G. Riess et al. [Supernova Search Team Collaboration], Astron. J. 116, 1009 (1998).

    Article  ADS  Google Scholar 

  2. C. L. Bennett et al., Astrophys. J. 464, L1 (1996); D. N. Spergel et al. [WMAP Collaboration], Astrophys. J. Suppl. 148, 175 (2003).

    Article  ADS  Google Scholar 

  3. H. K. Eriksen, F. K. Hansen, A. J. Banday, K. M. Gorski and P. B. Lilje, Astrophys. J. 605, 14 (2004) [erratum ibid. 609, 1198 (2004)]; K. Land and J. Magueijo, Phys. Rev. Lett. 95, 071301 (2005); C. J. Copi, D. Huterer, D. J. Schwarz and G. D. Starkman, Mon. Not. R. Astron. Soc. 367, 79 (2006).

    Article  ADS  Google Scholar 

  4. L. H. Ford, Phys. Rev. D 40, 967 (1989).

    Article  ADS  Google Scholar 

  5. S. Kanno, M. Kimura, J. Soda and S. Yokoyama, J. Cosmol. Astropart. Phys. 0808, 034 (2008).

    Article  ADS  Google Scholar 

  6. A. Golovnev, V. Mukhanov and V. Vanchurin, J. Cosmol. Astropart. Phys. 0806, 009 (2008).

    Article  ADS  Google Scholar 

  7. S. Kanno and J. Soda, Phys. Rev. D 74, 063505 (2006).

    Article  ADS  Google Scholar 

  8. C. Armendariz-Picon, J. Cosmol. Astropart. Phys. 0407, 007 (2004).

    Article  ADS  Google Scholar 

  9. J. B. Jimenez and A. L. Maroto, Phys. Rev. D 78, 063005 (2008).

    Article  ADS  Google Scholar 

  10. T. S. Koivisto and D. F. Mota, J. Cosmol. Astropart. Phys. 0808, 021 (2008).

    Article  MathSciNet  ADS  Google Scholar 

  11. C. G. Boehmer and T. Harko, Eur. Phys. J. C 50, 423 (2007); K. Bamba, S. Nojiri and S. D. Odintsov, Phys. Rev. D 77, 123532 (2008).

    Article  ADS  Google Scholar 

  12. B. Himmetoglu, C. R. Contaldi and M. Peloso, arXiv: 0809.2779 [astro-ph]; B. Himmetoglu, C. R. Contaldi and M. Peloso, arXiv:0812.1231 [astro-ph].

  13. J. M. Bardeen, Phys. Rev. D 22, 1882 (1980).

    Article  MathSciNet  ADS  Google Scholar 

  14. K. Dimopoulos, Phys. Rev. D 74, 083502 (2006); K. Dimopoulos and M. Karciauskas, JHEP 0807, 119 (2008).

    Article  MathSciNet  ADS  Google Scholar 

  15. A. Golovnev, V. Mukhanov and V. Vanchurin, arXiv: 0810.4304 [astro-ph].

  16. E. A. Lim, Phys. Rev. D 71, 063504 (2005); B. Li, D. F. Mota and J. D. Barrow, Phys. Rev. D 77, 024032 (2008).

    Article  ADS  Google Scholar 

  17. S. M. Carroll and E. A. Lim, Phys. Rev. D 70, 123525 (2004); S. M. Carroll, T. R. Dulaney, M. I. Gresham and H. Tam, arXiv:0812.1049 [hep-th].

    Article  ADS  Google Scholar 

  18. B. Himmetoglu, C. R. Contaldi and M. Peloso, Phys. Rev. D 80, 123530 (2009); C. Armendariz-Picon and A. Diez-Tejedor, J. Cosmol. Astropart. Phys. 0912, 018 (2009).

    Article  ADS  Google Scholar 

  19. D. H. Lyth and D. Wands, Phys. Lett. B 524, 5 (2002); D. H. Lyth, C. Ungarelli and D. Wands, Phys. Rev. D 67, 023503 (2003).

    Article  MATH  ADS  Google Scholar 

  20. T. R. Dulaney, M. I. Gresham and M. B. Wise, Phys. Rev. D 77, 083510 (2008); T. R. Dulaney and M. I. Gresham, arXiv:0805.1078 [gr-qc].

    Article  MathSciNet  ADS  Google Scholar 

  21. K. Dimopoulos, D. H. Lyth and Y. Rodriguez, arXiv: 0809.1055 [astro-ph]; M. Karciauskas, K. Dimopoulos and D. H. Lyth, arXiv:0812.0264 [astro-ph]; S. Yokoyama and J. Soda, J. Cosmol. Astropart. Phys. 0808, 005 (2008).

  22. R. Cai, B. Hu and S. Koh, Work in progress.

  23. N. D. Birrell and P. C. W. Davies, Quantum Fields In Curved Space (Cambridge University Press, Cambridge, Uk, 1982), p. 340

    MATH  Google Scholar 

  24. T. J. Battefeld and R. Brandenberger, Phys. Rev. D 70, 121302 (2004).

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seoktae Koh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koh, S., Hu, B. Timelike vector field dynamics in the early universe. Journal of the Korean Physical Society 60, 1983–1992 (2012). https://doi.org/10.3938/jkps.60.1983

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.60.1983

Keywords

Navigation