Skip to main content
Log in

Temperature dependences of the intensity and the position from photocurrent and photoluminescence spectra in CdS layers

  • Research Papers
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

Using the hot wall epitaxy method, we grew CdS epilayers on GaAs substrates. From the photocurrent (PC) measurement, the peaks corresponding to excitons A and B were observed in the short-wavelength region. Also, a crystal field splitting of 0.026 eV was extracted through the PC spectroscopy method. The PC intensities decreased with decreasing temperature. In the log J ph vs. 1/T plot, the dominant level was observed in the high-temperature region, and its activation energy was 33.9 meV. From the photoluminescence (PL) experiment, the PL intensities of the free exciton were exponentially reduced with increasing temperature. From the relations of log I PL vs. 1/T, an activation energy of 29.7 meV was observed in the high-temperature region. By comparing the PC and the PL results, we found that these activation energies were the thermal dissociation energies of the free exciton at the ground state and corresponded to the binding energies of the free exciton. Thus, we suggest that this trapping center limits the PC signal with decreasing temperature. Furthermore, the band gap energy of CdS as a function of temperature was well described by E g (T) = 2.581 − (6.1 × 10−4)T 2/(248 + T).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Ray, II–VI Compounds (Pergamon, Oxford, 1969).

    Google Scholar 

  2. H. Yang, A. Ishida, H. Fujiyasu and H. Kuwabara, J. Appl. Phys. 65, 2838 (1989).

    Article  ADS  Google Scholar 

  3. A. Lopez-Otero, Thin Solid Films 49, 3 (1987).

    Article  ADS  Google Scholar 

  4. N. V. Joshi, Photoconductivity: Art, Science, and Technology (Dekker, New York, 1990).

    Google Scholar 

  5. J. Humenberger, G. Linnert and K. Lischka, Thin Solid Films 121, 75 (1984).

    Article  ADS  Google Scholar 

  6. N. Lovergine, R. Cingolani and A. M. Mancini, J. Cryst. Growth 118, 304 (1992).

    Article  ADS  Google Scholar 

  7. B. S. Singh and S. Bhushan, Chalcogenide Lett. 5, 377 (2008).

    Google Scholar 

  8. K. Yasuda, H. B. Samion, M. Miyata, N. Araki, Y. Masuda and Y. Tomita, J. Cryst. Growth 222, 477 (2001).

    Article  ADS  Google Scholar 

  9. B. E. McCandless, A. Mondal and R. W. Birkmire, Sol. Energy Mater. Sol. Cells 36, 369 (1995).

    Article  Google Scholar 

  10. S. Yamaga and A. Yoshikawa, J. Cryst. Growth 117, 353 (1992).

    Article  ADS  Google Scholar 

  11. S. Keitoku, H. Ezumi, H. Osono and N. Ohto, Jpn. J. Appl. Phys. 34, 138 (1995).

    Article  ADS  Google Scholar 

  12. J. Sanchez-Gonzalez, A. Diaz Parralego, A. L. Ortiz and F. Guibeartean, Appl. Surf. Sci. 252, 6013 (2006).

    Article  ADS  Google Scholar 

  13. A. I. Oliva, R. Castro-Rodríguez, O. Solís-Canto, V. Sosa, P. Quintana and J. L. Peña, Appl. Surf. Sci. 205, 56 (2003).

    Article  ADS  Google Scholar 

  14. K. T. Chen, Y. Zhang, S. U. Egarievwe, M. A. George, A. Burger, C. H. Su, Y. G. Sha and S. L. Lehoczky, J. Cryst. Growth 166, 731 (1996).

    Article  ADS  Google Scholar 

  15. K. J. Hong, T. S. Jeong, C. J. Yoon and Y. J. Shin, J. Cryst. Growth 218, 19 (2000).

    Article  ADS  Google Scholar 

  16. R. H. Bube, Photoconductivity of Solids (Wiley, New York, 1969).

    Google Scholar 

  17. S. H. You, K. J. Hong, T. S. Jeong, C. J. Youn, J. S. Park, D. C. Shin and J. D. Moon, J. Cryst. Growth 256, 116 (2003).

    Article  ADS  Google Scholar 

  18. C. C. Klick, Phys. Rev. 89, 274 (1953).

    Article  ADS  Google Scholar 

  19. K. Cho, Topics in Current Physics; Excitons (Springer-Verlag, Berlin, 1979), Vol. 14, p. 8.

    Google Scholar 

  20. B. Segall and D. T. F. Marple, Physics and Chemistry of II–VI Comfounds, edited by M. Aven and J. S. Prener (North-Holland, Amsterdam, 1967), Chap. 7.

    Google Scholar 

  21. Y. S. Park and D. C. Reynolds, Phys. Rev. 132, 2450 (1963).

    Article  ADS  Google Scholar 

  22. Y. J. Shin, S. K. Kim, B. H. Park, T. S. Jeong, H. K. Shin, T. S. Kim and P. Y. Yu, Phys. Rev. B 44, 5522 (1991).

    Article  ADS  Google Scholar 

  23. J. S. Blackmore, Solid State Physics, 2nd ed. (Cambridge, London, 1985), p. 364.

    Google Scholar 

  24. R. A. Smitt, Semiconductors, 2nd ed. (Cambridge University, Cambridge, 1978), p. 72.

    Google Scholar 

  25. N. Lovergine, R. Cingolani and A. M. Mancini, J. Cryst. Growth 118, 304 (1992).

    Article  ADS  Google Scholar 

  26. S. Seto, Jpn. J. Appl. Phys. 44, 5913 (2005).

    Article  ADS  Google Scholar 

  27. S. Seto, T. Kuroda and K. Suzuki, Phys. Status Solidi C 3, 803 (2006).

    Article  ADS  Google Scholar 

  28. J. C. Simmons and G. W. Taylor, J. Phys. C 7, 3051 (1974).

    Article  ADS  Google Scholar 

  29. T. Makino, K. Tamura, C. H. Chia, Y. Segawa, M. Kawasaki, A. Ohtomo and H. Koinuma, J. Appl. Phys. 93, 5929 (2003).

    Article  ADS  Google Scholar 

  30. Y. P. Varshni, Physica 34, 149 (1967).

    Article  ADS  Google Scholar 

  31. D. G. Thomas and J. J. Hopfield, Phys. Rev. 124, 657 (1961).

    Article  ADS  Google Scholar 

  32. W. Martienssen and H. Warlimont, Handbook of Condensed Matter and Materials Data (Springer, Berlin, 2005).

    Book  Google Scholar 

  33. S. Wang, Fundamentals of Semiconductor Theory and Device Physics (Prentice-Hall, New York, 1989), p. 222.

    Google Scholar 

  34. J. I. Pankove, Optical Processes in Semiconductors (Dover, New York, 1971), p. 413.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. J. Youn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, J.H., Yang, H.J., Kim, T.S. et al. Temperature dependences of the intensity and the position from photocurrent and photoluminescence spectra in CdS layers. Journal of the Korean Physical Society 60, 1927–1933 (2012). https://doi.org/10.3938/jkps.60.1927

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.60.1927

Keywords

Navigation