Skip to main content
Log in

Overdamped transport of particles in a periodic ratchet potential

  • Research Papers
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

We have employed overdamped Langevin dynamics to study the driven transport of particles in a tilted ratchet potential. The system subject to an applied direct force undergoes an asymmetrical dynamic transition from a static state to a sliding state at different bidirectional critical forces. When an additional alternating force is applied to the system, the mean velocity shows steps as the direct force increases. These plateaus appear whenever the system’s natural frequency given by the direct force matches an integer multiple of the alternating frequency, and are similar to the Shapiro steps on the current-voltage characteristics in rf-driven Josephson junctions. For a rocking ratchet without a direct force, the rectification effect occurs when the alternating force exceeds a certain critical value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Hänggi and F. Marchesoni, Rev. Mod. Phys. 81, 387 (2009).

    Article  ADS  Google Scholar 

  2. M. Grifoni, M. S. Ferreira, J. Peguiron and J. B. Majer, Phys. Rev. Lett. 89, 146801 (2002).

    Article  ADS  Google Scholar 

  3. G. Costantini, U. M. B. Marconi and A. Puglisi, Europhys. Lett. 82, 50008 (2008).

    Article  ADS  Google Scholar 

  4. M. van den Broek and C. Van den Broeck, Phys. Rev. Lett. 100, 130601 (2008).

    Article  Google Scholar 

  5. R. M. da Silva, C. C. de Souza Silva and S. Coutinho, Phys. Rev. E 78, 061131 (2008).

    Article  ADS  Google Scholar 

  6. D. Speer, R. Eichhorn and P. Reimann, Phys. Rev. Lett. 102, 124101 (2009).

    Article  ADS  Google Scholar 

  7. R. A. van Delden, M. K. J. ter Wiel, M. M. Pollard, J. Vicario, N. Koumura and B. L. Feringa, Nature 437, 1337 (2005).

    Article  ADS  Google Scholar 

  8. M. H. Friedman, Principles and Models of Biological Transport, 2nd ed. (Springer, Berlin, 2008).

    Book  Google Scholar 

  9. P. Eshuis, K. van der Weele, D. Lohse and D. van der Meer, Phys. Rev. Lett. 104, 248001 (2010).

    Article  ADS  Google Scholar 

  10. R. D. Astumian, Science 276, 917 (1997).

    Article  Google Scholar 

  11. C. S. Lee, B. Jankó, I. Derényi and A. L. Barabási, Nature 400, 337 (1999).

    Article  ADS  Google Scholar 

  12. F. Falo, P. J. Martínez, J. J. Mazo, T. P. Orlando, K. Segall and E. Trías, Appl. Phys. A 75, 263 (2002).

    Article  ADS  Google Scholar 

  13. J. B. Majer, J. Peguiron, M. Grifoni, M. Tusveld and J. E. Mooij, Phys. Rev. Lett. 90, 056802 (2003).

    Article  ADS  Google Scholar 

  14. D. E. Shalóm and H. Pastoriza, Phys. Rev. Lett. 94, 177001 (2005).

    Article  ADS  Google Scholar 

  15. K. H. Lee, Solid State Commun. 151, 900 (2011).

    Article  ADS  Google Scholar 

  16. J. E. Villegas, S. Savel’ev, F. Nori, E. M. Gonzalez, J. V. Anguita, R. García and J. L. Vicent, Science 302, 1188 (2003).

    Article  ADS  Google Scholar 

  17. D. G. Luchinsky, M. J. Greenall and P. V. E. McClintock, Phys. Lett. A 273, 316 (2000).

    Article  MATH  ADS  Google Scholar 

  18. D. Cubero, V. Lebedev and F. Renzoni, Phys. Rev. E 82, 041116 (2010).

    Article  ADS  Google Scholar 

  19. D. Cole, S. Bending, S. Savel’ev, A. Grigorenko, T. Tamegai and F. Nori. Nat. Mater. 5, 305 (2006).

    Article  ADS  Google Scholar 

  20. F. J. Cao, L. Dinis and J. M. R. Parrondo, Phys. Rev. Lett. 93, 040603 (2004).

    Article  ADS  Google Scholar 

  21. C. C. de Souza Silva, J. Van de Vondel, M. Morelle and V. V. Moshchalkov, Nature 440, 651 (2006).

    Article  ADS  Google Scholar 

  22. H. Risken, The Fokker-Planck Equation (Springer, Berlin, 1984).

    Book  MATH  Google Scholar 

  23. R. Bartussek, P, Hänggi and J. G. Kissner, Europhys. Lett. 28, 459 (1994).

    Article  ADS  Google Scholar 

  24. K. H. Lee and D. Stroud, Phys. Rev. B 43, 5280 (1991).

    Article  ADS  Google Scholar 

  25. S. E. Hebboul and J. C. Garland, Phys. Rev. B 47, 5190 (1993).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. H. Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, K.H. Overdamped transport of particles in a periodic ratchet potential. Journal of the Korean Physical Society 60, 1845–1850 (2012). https://doi.org/10.3938/jkps.60.1845

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.60.1845

Keywords

Navigation