Skip to main content
Log in

Comparison of noise power spectrum methodologies in measurements by using megavoltage X-ray energies

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

The noise power spectrum (NPS) is one of the most general methods for measuring the noise amplitude and the quality of an image acquired from a uniform radiation field. The purpose of this study was to compare different NPS methodologies by using megavoltage X-ray energies. The NPS evaluation methods in diagnostic radiation were applied to therapy using the International Electrotechnical Commission standard (IEC 62220-1). In order to measure the region of interest (ROI) of the NPS, we used the following five factors: the overlapping impact, the non-overlapping impact, the penumbra, the flatness and different ROI sizes. We used NPS from four different types of detectors, the CR-IP (computed radiography image plate: photo-stimulable phosphor screen), the CR-IP-lead (hexalon lead screen), the CR-IP-back [lanex TM fast back screen: {terbium-doped gadolinium oxysulfide granular phosphor screen (Gd2O2S:Tb,133 mg/cm2)} + 1-mm-thick copper plate and the CR-IP-front (lanex TM fast front screen). A Kodak 2000 RT photo-stimulable phosphor-based computed radiographic (CR) system showed that the normalized noise power spectrum (NNPS) curve gradually decreased, in compliance with increasing spatial resolution. In addition, each detector showed a different reactivity of the NPS to megavoltage. The results of multivariate analysis of variance (MANOVA) test (methods × detectors) revealed significant main effects of the methods [F(1, 4) = 53.543, P = 0.001 and of the detectors [F(1, 4) = 17.556, P = 0.001]. The present study revealed that various factors could be employed to produce megavoltage imaging (MVI) of the NPS and as a baseline standard for NPS control in MVI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. S. Park, H. M. Cho, J. Jung, C. L. Lee and H. J. Kim, J. Korean Phys. Soc. 54, 236 (2009).

    Article  ADS  Google Scholar 

  2. H. S. Cho, S. G. Ghoi, B. S. Lee and S. Kim, J. Korean Phys. Soc. 51, 30 (2007).

    Article  ADS  Google Scholar 

  3. E. Samei and M. J. Flynn, Med. Phys. 29, 447 (2002).

    Article  Google Scholar 

  4. E. Samei, N. T. Ranger, J. T. Dobbins III and Y. Chen, Med. Phys. 33, 1454 (2006).

    Article  Google Scholar 

  5. H. S. Cho, S. I. Choi, K. Y. Kim, M. H. Nam, D. E. Kim, G. T. Joo and S. C. Lee, J. Korean Phys. Soc. 51, 35 (2007).

    Article  ADS  Google Scholar 

  6. E. Samei and M. J. Flynn, Med. Phys. 30, 608 (2003).

    Article  Google Scholar 

  7. N. Pongnapang, Biomed. Imaging Intervention J. 1, e12 (2005).

    Google Scholar 

  8. O. Rampado, P. Isoardi and R. Ropolo, Phys. Med. Biol. 51, 1577 (2006).

    Article  Google Scholar 

  9. M. J. Flyun and E. Samei, Med. Phys. 30, 608 (2003).

    Article  Google Scholar 

  10. J. T. Dobbins III, D. L. Ergun, L. Rutz, D. A. Hinshaw, H. Blume and D. C. Clark, Med. Phys. 22, 1581 (1995).

    Article  Google Scholar 

  11. H. M. Cho, H. J. Kim, C. L. Lee, S. Nam and J. Y. Jung, Proc. IEEE M19-199, 3840 (2007).

  12. H. Illers, E. Buhr and C. Hoeschen, Radiat. Prot. Dosim. 114, 39 (2005).

    Article  Google Scholar 

  13. J. T. Dobbisn III, E. Samei, N. T. Ranger and Y. Chen, Med. Phys. 33, 1466 (2006).

    Article  Google Scholar 

  14. M. J. Flyun and E. Samei, Med. Phys. 26, 1612 (1999).

    Article  Google Scholar 

  15. R. Nath, P. J. Biggs, F. J. Bova, C. C Ling, J. A. Purdy, J. V. D. Geijn and M. S. Weinhous, Med. Phys. 21, 1093 (1994).

    Article  Google Scholar 

  16. P. F. Judy, Med. Phys. 3, 233 (1976).

    Article  Google Scholar 

  17. I. A. Cunningham and A. Fenster, Med. Phys. 14, 533 (1987).

    Article  Google Scholar 

  18. E. Samei, M. J. Flynn and D. A. Reimann, Med. Phys. 25, 102 (1998).

    Article  Google Scholar 

  19. E. G. Buhr, S. Gunther-Kohfahl and U. Neitzel, Med. Phys. 30, 2323 (2003).

    Article  Google Scholar 

  20. C. E. Metz and K. Doi, Phys. Med. Biol. 24, 1079 (1979).

    Article  Google Scholar 

  21. H. Fujita, D. Tsai, T. Itoh, K. Doi, J. Morishita, K. Ueda and A. Ohtsuka, IEEE Trans. Med. Imaging 11, 34 (1992).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo-Young Choe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Min, JW., Son, JH., Jeong, HW. et al. Comparison of noise power spectrum methodologies in measurements by using megavoltage X-ray energies. Journal of the Korean Physical Society 60, 129–136 (2012). https://doi.org/10.3938/jkps.60.129

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.60.129

Keywords

Navigation