Skip to main content
Log in

Electronic structures and optical properties of CuSCN with Cu vacancies

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

Based on density functional theory (DFT) within the generalized gradient approximation (GGA) using the CASTEP code, we calculated the formation energy of a Cu vacancy, as well as the band structure and the optical properties of β-CuSCN with Cu vacancies. Removal a Cu atom from the 32-site and the 72-site supercell results in an enlargement of the band-gap and a slight relaxation in the lattice parameter. An accepter level above the valence band maximum is observed in the 32-site supercell with a Cu vacancy, which results in the onset of a small absorption pre-peak at 0.65 eV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. S. Dresselhaus and I. L. Thomas, Nature 414, 332 (2001).

    Article  ADS  Google Scholar 

  2. B. Oregan and M. Gratzel, Nature 353, 737 (1991).

    Article  ADS  Google Scholar 

  3. H. Gerische, Photochem. Photobiol. 16, 243 (1972).

    Article  Google Scholar 

  4. R. Memming, Photochem. Photobiol. 16, 325 (1972).

    Article  Google Scholar 

  5. R. Hehl and G. Thiele, Z. Anorg. Allg. Chem. 626, 2167 (2000).

    Article  Google Scholar 

  6. Y. Ni, Z. G. Jin and Y. Fu, J. Am. Ceram. Soc. 90, 2966 (2007).

    Article  Google Scholar 

  7. C. A. N. Fernando, A. Kitagawa, M. Suzuki, K. Takahashi and T. Komura, Sol. Energy Mater. Sol. Cells 33, 301 (1994).

    Article  Google Scholar 

  8. C. Levy-Clement, R. Tena-Zaera, M. A. Ryan, A. Katty and G. Hodes, Adv. Mater. 17, 1512 (2005).

    Article  Google Scholar 

  9. Y. Ni, Z. G. Jin, K. Yu, Y. A. Fu, T. J. Liu and T. Wang, Electrochim. Acta 53, 6048 (2008).

    Article  Google Scholar 

  10. R. Tena-Zaera, A. Katty, S. Bastide, C. Levy-Clement, B. O’Regan and V. Munoz-Sanjose, Thin Solid Films 483, 372 (2005).

    Article  ADS  Google Scholar 

  11. R. Tena-Zaera, M. A. Ryan, A. Katty, G. Hodes, S. Bastide and C. Levy-Clement, C.R. Chim. 9, 717 (2006).

    Article  Google Scholar 

  12. B. R. Sankapal, E. Goncalves, A. Ennaoui and M. C. Lux-Steiner, Thin Solid Films 451, 128 (2004).

    Article  ADS  Google Scholar 

  13. Y. W. Dong, X. Ji, W. Xu, J. Q. Tang and P. Guo, Electrochem. Solid-State Lett. 12, H54 (2009).

    Article  Google Scholar 

  14. D. L. Smith and V. I. Saunders, Acta Crystallogr., Sect. B: Struct. Sci. 38, 907 (1982).

    Article  Google Scholar 

  15. M. Kabesova, M. Dunajjurco, M. Serator, J. Gazo and J. Garaj, Inorg. Chim. Acta 17, 161 (1976).

    Article  Google Scholar 

  16. D. Kruger and E. Tschirch, Chem. Ber. B 74, 1378 (1941).

    Article  Google Scholar 

  17. D. L. Smith and V. J. Saunders, Acta Crystallogr., Sect. B: Struct. Sci. 37, 1807 (1981).

    Article  Google Scholar 

  18. A. N. Banerjee and K. K. Chattopadhyay, Prog. Cryst. Growth Charact. Mater. 50, 52 (2005).

    Article  Google Scholar 

  19. D. L. Smith and V. J. Saunders, Acta Crystallogr., Sect. B: Struct. Sci. 37, 1807 (1981).

    Article  Google Scholar 

  20. H. J. Snaith and L. Schmidt-Mende, Adv. Mater. 19, 3187 (2007).

    Article  Google Scholar 

  21. K. Tennakone and W. M. Ariyasingha, Electrochim. Acta 25, 2 (1980).

    Article  Google Scholar 

  22. B. O’Regan, D. T. Schwartz, S. M. Zakeeruddin and M. Gratzel, Adv. Mater. 12, 1263 (2000).

    Article  Google Scholar 

  23. T. Dittrich, D. Kieven, A. Belaidi, M. Rusu, J. Tornow, K. Schwarzburg and M. C. Lux-Steiner, J. Appl. Phys. 105, 034509 (2009).

    Article  ADS  Google Scholar 

  24. K. Tennakone, A. H. Jayatissa, C. A. N. Fernando, S. Wickramanayake, S. Punchihewa, L. K. Weerasena and W. D. R. Premasiri, Phys. Status Solidi A 103, 491 (1987).

    Article  ADS  Google Scholar 

  25. V. P. S. Perera, M. K. I. Senevirathna, P. Pitigala and K. Tennakone, Sol. Energy Mater. Sol. Cells 86, 443 (2005).

    Article  Google Scholar 

  26. J. E. Jaffe, T. C. Kaspar, T. C. Droubay, T. Varga, M. E. Bowden and G. J. Exarhos, J. Phys. Chem. C 114, 9111 (2010).

    Article  Google Scholar 

  27. M. D. Segall, P. J. D. Lindan, M. J. Probert, C. J. Pickard, P. J. Hasnip, S. J. Clark and M. C. Payne, J. Phys. Condens. Matter 14, 2717 (2002).

    Article  ADS  Google Scholar 

  28. J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  ADS  Google Scholar 

  29. L. J. Chen, Z. F. Hou, Z. Z. Zhu and Y. Yang, Acta Phys. Chim. Sin. 52, 2229 (2003).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Song-You Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ji, W., Yue, GQ., Ke, FS. et al. Electronic structures and optical properties of CuSCN with Cu vacancies. Journal of the Korean Physical Society 60, 1253–1257 (2012). https://doi.org/10.3938/jkps.60.1253

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.60.1253

Keywords

Navigation