Skip to main content
Log in

Sagnac interferometer based on an etched photonic crystal fiber

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

The transmission characteristics of a Sagnac interferometer based on an etched polarization-maintaining photonic crystal fiber (PM-PCF) incorporating an erbium-doped fiber (EDF) are investigated for simultaneous measurement of strain and temperature. After reducing the cladding diameter of the PM-PCF, we fabricated the Sagnac interferometer to induce peak wavelengths for effective measurement of strain and temperature changes. The pumped EDF is implemented to be both a light source for the sensing signal and a temperature-sensing probe. The applied strain shifts the peak wavelength to a longer wavelength and does not change the peak power in the transmission spectrum of the Sagnac interferometer. The etched PM-PCF improves the strain sensitivity of the proposed sensing probe to 4.7 pm/µɛ, which is three time higher than previous results. However, the pumped EDF only responds to an external temperature change, and the amplified spontaneous emission of the pumped EDF is decreased by an applied temperature change. Eventually, the transmission peak power of the etched PM-PCF-based Sagnac interferometer is only changed by an applied temperature change. Therefore, it is possible to discriminate strain and temperature by measuring variations in the peak wavelength and in the transmission peak power, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. G. Han, T. V. A. Tran, S. H. Kim and S. B. Lee, Opt. Lett. 30, 1114 (2005).

    Article  ADS  Google Scholar 

  2. P. Prerana, R. K. Varshney, B. P. Pal and B. Nagaraju, J. Opt. Soc. Korea 14, 337 (2010).

    Article  Google Scholar 

  3. H. J. Kim, O. J. Kwon and Y. G. Han, J. Korean Phys. Soc. 55, 1286 (2009).

    Article  ADS  Google Scholar 

  4. J. Jung, H. Nam, J. H. Lee, N. Park and B. Lee, Appl. Opt. 38, 2749 (1999).

    Article  ADS  Google Scholar 

  5. E. D. L. Rosa, L. A. Zenteno, A. N. Starodumov and D. Monzon, Opt. Lett. 22, 481 (1997).

    Article  ADS  Google Scholar 

  6. H. Y. Fu, H. Y. Tam, L. Y. Shao, X. Dong, P. K. A. Wai, C. Lu and S. K. Khijwania, Appl. Opt. 47, 2835 (2008).

    Article  ADS  Google Scholar 

  7. D. H. Kim and J. U. Kang, Opt. Eng. 46, 0750036/1 (2007).

    Google Scholar 

  8. X. Dong, H. Y. Tam and P. Shum, Appl. Phys. Lett. 90, 151113 (2007).

    Article  ADS  Google Scholar 

  9. Y. G. Han, J. Korean Phys. Soc. 282, 2161 (2009).

    Google Scholar 

  10. D. P. Zhou, L. Wei, W. K. Liu and J. W. Y. Lit, Opt. Commun. 281, 4640 (2008).

    Article  ADS  Google Scholar 

  11. O. Frazao, L. M. Marques, S. Santos, J. M. Baptista and J. L. Santos, IEEE Photon. Technol. Lett. 18, 2407 (2006).

    Article  ADS  Google Scholar 

  12. E. J. Jung, C. S. Kim, Y. G. Han and M. Y. Jeong, Opt. Express 16, 2791 (2008).

    Article  ADS  Google Scholar 

  13. E. Desurvire, Erbium-doped Fiber Amplifier: Principle and Applications (Wiley, New York, 1994).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young-Geun Han.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Han, YG. Sagnac interferometer based on an etched photonic crystal fiber. Journal of the Korean Physical Society 60, 1229–1232 (2012). https://doi.org/10.3938/jkps.60.1229

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.60.1229

Keywords

Navigation