Skip to main content
Log in

Computation of the electrostatic force on a cylindrical colloidal particle: Comparison of the Poisson-Nernst-Planck model and the Poisson-Boltzmann model

  • Research Papers
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

This paper computes the electrostatic force on a cylindrical colloidal particle when it is in the proximity of a charged planar wall and an external electric field parallel to the planar wall is applied. The electrostatic force depends on the electric field distribution around the particle and is calculated by integrating the electrostatic stress tensor over the particle surface. The electric field, as well as the ion distribution, is obtained from the numerical solution of Poisson-Nernst-Planck equations on Chimera grids by using the finite-volume method. A comparison of the electrostatic force obtained from the Poisson-Nernst-Planck model and with that obtained from the Poisson-Boltzmann model has been made to identify the limitations of the Poisson-Boltzmann model. The Poisson-Boltzmann model is found not to account for the effect of an external field on the distribution of ions and hence to predict a high electrostatic force in the direction of the external electric field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. H. Kim, H. J. Oh, N. H. Lee, C. R. Yoon, S. J. Kim, W. W. Kim and J. S. Song, J. Korean Phys. Soc. 48, 1329 (2006).

    Google Scholar 

  2. L. B. Schein, J. Electrostat. 65, 613 (2007).

    Article  Google Scholar 

  3. Z. Wu, Y. Gao and D. Li, Electrophoresis 30, 773 (2009).

    Article  Google Scholar 

  4. L. M. Fu, R. J. Yang and G. B. Lee, Electrophoresis 23, 602 (2002).

    Article  Google Scholar 

  5. O. Kurosawa and M. Washizu, J. Electrostat. 65, 423 (2007).

    Article  Google Scholar 

  6. N. G. Loucaides, A. Ramos and G. E. Georghiou, J. Electrostat. 69, 111 (2011).

    Article  Google Scholar 

  7. F. A. Morrison, J. Colloid Interface Sci. 34, 210 (1970).

    Article  Google Scholar 

  8. R. W. O’Brien and L. R. White, J. Chem. Soc., Faraday Trans. 2 74, 1607 (1978).

    Article  Google Scholar 

  9. R.W. O’Brien and R. J. Hunter, Can. J. Chem. 59, 1878 (1981).

    Article  Google Scholar 

  10. H. J. Keh and J. L. Anderson, J. Fluid Mech. 153, 417 (1985).

    Article  ADS  MATH  Google Scholar 

  11. H. J. Keh and S. B. Chen, J. Fluid Mech. 194, 377 (1988).

    Article  ADS  MATH  Google Scholar 

  12. S. L. Carnie, D. Y. C. Chan and J. S. Gunning, J. Colloid Interface Sci. 165, 116 (1994).

    Article  Google Scholar 

  13. G. Luo, Q. Wang, H. Wang and J. Jin, Colloid J. 69, 458 (2007).

    Article  Google Scholar 

  14. A. V. Nguyen, G. M. Evans and G. J. Jameson, Encyclopedia of Surface and colloid Science, DOI: 10.1081/EESCS-120000598.

  15. H. Ohshima and A. Hyono, J. Colloid Interface Sci. 333, 202 (2009).

    Article  Google Scholar 

  16. R. Ettelaie and R. Buscall, Adv. Colloid Interface Sci. 61, 131 (1995).

    Article  Google Scholar 

  17. E. Lemaire, D. Merhi, A. T. Perez and J. M. Valverde, J. Electrostat. 53, 107 (2001).

    Article  Google Scholar 

  18. Z. Adamcyzk and P. Weronski, Adv. Colloid Interface Sci. 83, 137 (1999).

    Article  Google Scholar 

  19. M. Ospeck and S. Fraden, J. Chem. Phys. 109, 9166 (1998).

    Article  ADS  Google Scholar 

  20. S. L. Carnie, D. Y. C. Chan and J. Stankovich, J. Colloid Interface Sci. 165, 116 (1994).

    Article  Google Scholar 

  21. P. K. Das and S. Bhattacharjee, Langmuir 21, 4755 (2005).

    Article  Google Scholar 

  22. J. Ennis and J. L Anderson, J. Colloid Interface Sci. 185, 497 (1997).

    Article  Google Scholar 

  23. H. Ohshima, J. Colloid Interface Sci. 258, 252 (2003).

    Article  Google Scholar 

  24. X. Luo, A. Beskok and G. E. Karniadakis, J. Comput. Phys. 229, 3828 (2010).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  25. H. Zhao and H. H. Bau, Langmuir. 24, 5332 (2008).

    Article  Google Scholar 

  26. S. Qian, S. W. Joo, W. S. Hou and X. Zhao, Langmuir 24, 4053 (2007).

    Google Scholar 

  27. M. V. Soestbergen, P. M. Biesheuvel, R. T. H. Rongen, L. J. Ernst and G. Q. Zhang, J. Electrostat. 66, 567 (2008).

    Article  Google Scholar 

  28. M. Smoluchowski, Handbuch der Elektrizitat und des Magnetismus (Barth, Leipzig 1914).

  29. A. M. Molina, M. Q. Perez, F. G. Gonzalez and R. H. Alvarez, Colloids Surf., A 222, 155 (2003).

    Article  Google Scholar 

  30. H. Kawamoto, J. Electrostat. 67, 850 (2009).

    Article  Google Scholar 

  31. S. Bhattacharjee and M. Elimelech, J. Colloid Interface Sci. 193, 273 (1997).

    Article  Google Scholar 

  32. P. K. Das, S. Bhattacharjee and W. Moussa, Langmuir 19, 4162 (2003).

    Article  Google Scholar 

  33. D. V. Fernandes, S. Kang and Y. K. Suh, J. Mech. Sci. Technol. 24, 1 (2010).

    Article  Google Scholar 

  34. R. Hogg, T. W. Healy and D. W. Fuerstenau, Trans. Faraday Soc. 62, 1638 (1966).

    Article  Google Scholar 

  35. X. Shan, X. Huang, K. J. Foley, P. Zhang, K. Chen, S. Wang and N. Tao, Anal. Chem. 82, 234 (2010).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Kweon Suh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fernandes, D.V., Alapati, S. & Suh, Y.K. Computation of the electrostatic force on a cylindrical colloidal particle: Comparison of the Poisson-Nernst-Planck model and the Poisson-Boltzmann model. Journal of the Korean Physical Society 60, 1102–1113 (2012). https://doi.org/10.3938/jkps.60.1102

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.60.1102

Keywords

Navigation