Journal of the Korean Physical Society

, Volume 76, Issue 1, pp 93–96 | Cite as

High-Energy Proton-Irradiation Effects on the Magnetism of the Transition-Metal Dichalcogenide MoS2

  • Gi Wan Jeon
  • Kyu Won Lee
  • Cheol Eui LeeEmail author
Brief Reports


We have studied the effects of high-energy proton irradiation on the magnetism of the transition-metal dichalcogenide MoS2. The pristine sample showed ferromagnetic and paramagnetic responses with a diamagnetic background, which all decreased initially with increasing irradiation dose. The ferromagnetic component increased subsequently with further irradiation, for which a spin-3/2 species was identified from the analysis of the M(H) curve, in contrast to the spin-1 species identified in the pristine sample. The magnetism in our MoS2 samples may be accounted for by the structural defects that apparently are cured by low-dose proton irradiation and subsequently become significant by further irradiation.


MoS2 High-energy proton irradiation Magnetism Structural defects 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the Ministry of Education and the National Research Foundation of Korea (Project No. 2019S1A5A2A03050121). The Korea Basic Science Institute (KBSI) and the Korea Multi-Purpose Accelerator Complex (KOMAC) are, respectively, acknowledged for the measurements and the proton irradiation.


  1. [1]
    W. Han, APL Mater. 4, 032401 (2016).ADSCrossRefGoogle Scholar
  2. [2]
    W. Liu and Y. Xu, Curr. Opin. Solid State Mat. Sci. 20, 388 (2016).ADSCrossRefGoogle Scholar
  3. [3]
    N. Zibouche, A. Kuc, J. Musfeldt and T. Heine, Ann. Phys.-Berlin 526, 395 (2014).ADSCrossRefGoogle Scholar
  4. [4]
    D. Jariwala et al., ACS Nano 8, 1102 (2014).CrossRefGoogle Scholar
  5. [5]
    X. Xu, W. Yao, D. Xiao and T. F. Heinz, Nat. Phys. 10, 343 (2014).CrossRefGoogle Scholar
  6. [6]
    Y. K. Luo et al., Nano Lett. 17, 3877 (2017).ADSCrossRefGoogle Scholar
  7. [7]
    Q. Liu et al., ACS Appl. Mater. Interfaces 9, 12728 (2017).CrossRefGoogle Scholar
  8. [8]
    L. Majidi and R. Asgari, Phys. Rev. B 90, 165440 (2014).ADSCrossRefGoogle Scholar
  9. [9]
    M. Khezerlou and H. Goudarzi, Phys. Rev. B 93, 115406 (2016).ADSCrossRefGoogle Scholar
  10. [10]
    P. M. Krstajić, P. Vasilopoulos and M. Tahir, Physica E 75, 317 (2016).ADSCrossRefGoogle Scholar
  11. [11]
    J. Hong et al., Nat. Commun. 6, 6293 (2015).ADSCrossRefGoogle Scholar
  12. [12]
    S. W. Han et al., Phys. Rev. Lett. 110, 247201 (2013).ADSCrossRefGoogle Scholar
  13. [13]
    J. Zhang et al., Nano Lett. 7, 2370 (2007).ADSCrossRefGoogle Scholar
  14. [14]
    Y. P. Feng et al., WIREs Comput. Mol. Sci. 7, 5 (2017).CrossRefGoogle Scholar
  15. [15]
    D. Cao et al., J. Phys. Chem. C 119, 4294 (2015).CrossRefGoogle Scholar
  16. [16]
    H. Zheng et al., Appl. Phys. Lett. 104, 132403 (2014).ADSCrossRefGoogle Scholar
  17. [17]
    S. Mathew et al., Appl. Phys. Lett. 101, 102103 (2012).ADSCrossRefGoogle Scholar
  18. [18]
    L. Cai et al., J. Am. Chem. Soc. 137, 2622 (2015).CrossRefGoogle Scholar
  19. [19]
    S. Yan et al., Appl. Phys. Lett. 106, 012408 (2015).ADSCrossRefGoogle Scholar
  20. [20]
    S. Tongay et al., Appl. Phys. Lett. 101, 123105 (2012).ADSCrossRefGoogle Scholar
  21. [21]
    K. W. Lee, H. Kweon and C. E. Lee, Adv. Mater. 25, 5663 (2013).CrossRefGoogle Scholar
  22. [22]
    D. W. Kim, K. W. Lee and C. E. Lee, J. Magn. Magn. Mater. 460, 397 (2018).ADSCrossRefGoogle Scholar
  23. [23]
    T. Kim et al., ACS Nano 8, 2774 (2014).CrossRefGoogle Scholar

Copyright information

© The Korean Physical Society 2020

Authors and Affiliations

  1. 1.Department of PhysicsPukyong National UniversityBusanKorea
  2. 2.Department of PhysicsKorea UniversitySeoulKorea

Personalised recommendations