Advertisement

Journal of the Korean Physical Society

, Volume 76, Issue 1, pp 79–85 | Cite as

Collimators for Gamma Dual Energy CT Arch-Detector: A Simulation Study

  • Eva Pratiwi
  • Seungbin Bae
  • Hakjee Lee
  • Muhammad Nasir Ullah
  • Boram Lee
  • Kisung Lee
  • Jungyeol YeomEmail author
Article
  • 2 Downloads

Abstract

The image resolution of computed tomography (CT) scan system can be affected by numbers of factors such as collimator material, collimator design, stopping power of detector and scatter photons rejection and/or correction technique. The scatter photons are one of the major sources of background noise that can immensely degrade the image quality of the CT system. The image quality, in turn, affects the discrimination and identification performance of the system especially in the case of dual-energy CT systems for material decomposition. Therefore, for material identification, acquisition of raw data with minimal noise is of immense importance. In this simulation study, the performance of two types of collimators was evaluated to come up with a better collimator design for background noise compression. Both collimators were made of tungsten with similar length of 30 mm but with different hole shapes (fan and parallel).

In both cases, results suggest that there is a clear improvement in terms of spatial resolution. In a comparison of grids structure, fan grid performed slightly better than parallel for most of the cases. The peak-to-valley (PV) ratio for 122 keV gamma radiation source improved on average ∼0.16 (16%) and ∼0.23 (23%) for fan collimator and parallel collimator respectively. For 60 keV gamma source, the improvements were ∼0.14 (14%) and ∼0.17 (17%) respectively. Thus, from the results, it can be concluded that fan grid collimator can provide superior performance compared to parallel grid collimator.

Keywords

Dual energy CT Material detection Arch detector 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work was supported in part by National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (NRF-2019M2D2A1A02059221, NRF-2017M2A2A4A01071240, 2017M2A2A6A02020807 and NRF-2018M2A8A4024283)

References

  1. [1]
    V. Cnudde and M. N. Boone, Earth-Science Rev. 123, 1 (2013).ADSCrossRefGoogle Scholar
  2. [2]
    A. Mouton and T. P. Breckon, J. X-ray Sci. Tech. 23.5, 531 (2015).CrossRefGoogle Scholar
  3. [3]
    O. E. Wetter and Olive Emil, J. Forensic Radiol. Imaging 1.4, 152 (2013).CrossRefGoogle Scholar
  4. [4]
    A. Bieberle et al., Chemie Ingenieur Technik 85.7, 1002 (2013).CrossRefGoogle Scholar
  5. [5]
    C. H. McCollough et al., Radiology 276.3, 637 (2015).CrossRefGoogle Scholar
  6. [6]
    W. van Elmpt et al., Radiother. Oncol. 119.1, 137 (2016).CrossRefGoogle Scholar
  7. [7]
    Macovski, A et al., Comp. Bio. Med. 6.4, 325 (1976).CrossRefGoogle Scholar
  8. [8]
    M. Bazalova et al., Phys. in Med. & Bio. 53.9, 2439 (2008).CrossRefGoogle Scholar
  9. [9]
    M. Paziresh et al., J. App. Phys. 119.21, 214901 (2016).CrossRefGoogle Scholar
  10. [10]
    R. Carmi, G. Naveh and A. Altman, IEEE Nucl. Sci. Symp. Conf. Rec. (2005), Vol. 4.Google Scholar
  11. [11]
    D. J. Walter et al., Phys. of Med. Imaging 5368, 2004.Google Scholar
  12. [12]
    G. Landry et al., Radiother. Oncol. 100.3, 375 (2011).CrossRefGoogle Scholar
  13. [13]
    P. R. Seevinck et al., Anti-Cancer Agents in Medicinal. 7.3, 317 (2007).CrossRefGoogle Scholar
  14. [14]
    L. S. Chow and R. Paramesran, Biomed. Signal Proces. 27, 145 (2016).CrossRefGoogle Scholar
  15. [15]
    S. C. Moore, K. and I. Cullum, Eur J. Nucl. Med. 19.2, 138 (1992).Google Scholar
  16. [16]
    Y. Kyriakou and W. Kalender, Phys. Med. Bio. 52.20, 6275 (2007).CrossRefGoogle Scholar
  17. [17]
    A. Sisniega et al., Med. Phys. 40.5, (2013).Google Scholar
  18. [18]
    J. Bae et al., J. Korean Phys. Soc. 70.2, 192 (2017).ADSCrossRefGoogle Scholar
  19. [19]
    M. Saito, Med. Phys. 39.4, 2021 (2012).CrossRefGoogle Scholar
  20. [20]
    P. Mah, P., T. E. Reeves and W. D. McDavid, Dentomaxillofacial Radiol. 39.6, 323 (2010).CrossRefGoogle Scholar
  21. [21]
    R. Molteni, Oral Surg. Oral Med. Oral Patho. Oral Radiol. 116.1, 105 (2013).CrossRefGoogle Scholar
  22. [22]
    M. Torikoshi et al., Phys. Med. Biol. 48.5, 673 (2003).CrossRefGoogle Scholar
  23. [23]
    S. Jan et al., Phys. Med. Biol. 49.19, 4543 (2004).CrossRefGoogle Scholar
  24. [24]
    Ullah, Muhammad Nasir et al., Nucl. Instrum. Meth. A 911, 115 (2018).ADSCrossRefGoogle Scholar
  25. [25]
    Y-S. Lee et al., Nucl. Instrum. Meth. A 832, 63 (2016).ADSCrossRefGoogle Scholar
  26. [26]
    V. Bom, M. Goorden and F. Beekman, Phys. Med. Biol 56.11, 3199 (2011).CrossRefGoogle Scholar
  27. [27]
    S. R. Cherry, J. A. Sorenson and M. E. Phelps, Physics in Nuclear Medicine (Elsevier, Philadelphia, 2012).Google Scholar
  28. [28]
    M. Saito, Color Res. Appl. 21, 35 (1996).MathSciNetCrossRefGoogle Scholar

Copyright information

© The Korean Physical Society 2020

Authors and Affiliations

  • Eva Pratiwi
    • 1
  • Seungbin Bae
    • 2
  • Hakjee Lee
    • 2
  • Muhammad Nasir Ullah
    • 1
  • Boram Lee
    • 3
  • Kisung Lee
    • 1
    • 4
  • Jungyeol Yeom
    • 1
    • 4
    Email author
  1. 1.Department of Bio-Convergence EngineeringKorea UniversitySeoulKorea
  2. 2.ARALE LaboratorySeoulKorea
  3. 3.Samsung Medical CenterSeoulKorea
  4. 4.School of Biomedical Engineering Korea UniversitySeoulKorea

Personalised recommendations