Advertisement

Journal of the Korean Physical Society

, Volume 76, Issue 1, pp 55–58 | Cite as

Effect of Coupled Quantum-Dot Insertion on the Radiative Recombination Probability of Wurtzite InGaN/GaN Quantum Dots

  • Seoung-Hwan ParkEmail author
  • Doyeol Ahn
Article
  • 6 Downloads

Abstract

Light emission charactersitcs of single and coupled wurtzite (WZ) InGaN/GaN quantum-dot (QD) structures were investigated by using an effective mass theory. Strain components in the well of the coupled QD are found to be smaller than those in the well of the single QD structure. In particular, the reduction effect in ϵzz is dominant and, as a result, the polarization component Izz for the strain tensor ϵzz is largely reduced for the coupled QD. The coupled QD structure shows much larger peak intensity than the single QD structure because the interband transition probability between electrons and holes is enhanced owing to the reduced internal field.

Keywords

GaN InGaN Quantum dot Polarization potential Strain 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2018R1D1A1B07042028).

References

  1. [1]
    D. Bimberg, M. Grundmann and N. N. Ledentsov: Quantum Dot Heterostructure (Wiley, New York, 1999), Ch. 1.Google Scholar
  2. [2]
    J. Piprek (ed.), Handbook of Optoelectronic Device Modeling and Simulation, (CRC Press, Boca Raton, 2017), Chs. 11 and 13.Google Scholar
  3. [3]
    J. J. Wierer, Jr., N. Tansu, A. J. Fischer and J. Y. Tsao, Laser Photonics Rev. 10, 612 (2016).ADSCrossRefGoogle Scholar
  4. [4]
    Y-R. Wu, Y-Y. Lin, H-H. Huang and J. Singh, J. Appl. Phys. 105, 013117 (2009).ADSCrossRefGoogle Scholar
  5. [5]
    O. G. Schmidt et al., Electron. Lett. 32, 1302 (1996).CrossRefGoogle Scholar
  6. [6]
    N. N. Ledentsov et al., Appl. Phys. Lett. 70, 2888 (1997).ADSCrossRefGoogle Scholar
  7. [7]
    S. Schulz, A. Berube and E. P. O’Reilly, Phys. Rev. B 79, 081401(R) (2009).ADSCrossRefGoogle Scholar
  8. [8]
    S. Schulz and E. P. O’Reilly, Phys. Rev. B 82, 033411 (2010).ADSCrossRefGoogle Scholar
  9. [9]
    A. Neogi et al., Nano Lett. 5, 213 (2004).ADSCrossRefGoogle Scholar
  10. [10]
    S. C. Davies, D. J. Mowbray, F. Ranalli and T. Wang, Appl. Phys. Lett. 96, 251904 (2010).ADSCrossRefGoogle Scholar
  11. [11]
    S. L. Chuang, IEEE J. Quantum Electron. 32, 1791 (1996).ADSCrossRefGoogle Scholar
  12. [12]
    S. H. Park and S. L. Chuang, Phys. Rev. B 59, 4725 (1999).ADSCrossRefGoogle Scholar
  13. [13]
    E. O. Kane, J. Phys. Chem. Solids 1, 249 (1957).ADSCrossRefGoogle Scholar
  14. [14]
    S. S. Huang et al., Chin. Phys. B 17, 323 (2008).ADSCrossRefGoogle Scholar
  15. [15]
    S. Schulz, A. Berube and E. P. O’Reilly, Phys. Rev. B 79, 081401(R) (2009).ADSCrossRefGoogle Scholar

Copyright information

© The Korean Physical Society 2020

Authors and Affiliations

  1. 1.Department of Electronics EngineeringCatholic University of DaeguKyeongsanKorea
  2. 2.Institute of Quantum Information Processing and SystemsUniversity of SeoulSeoulKorea
  3. 3.Physics Department, Charles E Schmidt College of ScienceFlorida Atlantic UniversityBoca RatonUSA

Personalised recommendations