Advertisement

Journal of the Korean Physical Society

, Volume 76, Issue 1, pp 49–54 | Cite as

Dielectric Relaxation in Polyvinylidene Fluoride (PVDF)/CsHSO4 Composites

  • H. K. ShinEmail author
Article
  • 4 Downloads

Abstract

A detailed dielectric spectroscopy study was performed on polyvinylidene fluoride (PVDF) and PVDF/CsHSO4 composites at temperatures 220 K ≤ T ≤ 340 K and frequencies 10 Hz ≤ ν ≤ 105 Hz. The observed dielectric spectra were described as a contribution of two relaxation processes and dc conductivity. The obtained relaxation time for each process revealed a saddle-like temperature dependence which could not be fitted to a single Arrhenius or Vogel-Fulcher-Tammann equation. This unusual temperature behavior was successfully analyzed using an empirical model previously proposed to interpret similar nonmonotonic behavior of the relaxation time in confined dielectric systems. A brief discussion is presented about a possibility that some part of the amorphous regions is confined by the surrounding crystalline regions and vice versa in PVDF and the composites.

Keywords

Polymer Dielectric relaxation Phase transitions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work was supported by the Daejin University Research Grants in 2019.

References

  1. [1]
    J. A. Puertolas et al., Compos. Sci. Technol. 152, 263 (2017).CrossRefGoogle Scholar
  2. [2]
    Y. Li et al., Curr. Nanosci. 9, 679 (2013).CrossRefGoogle Scholar
  3. [3]
    H. Rekik et al., Composites: Part B 45, 1199 (2013).CrossRefGoogle Scholar
  4. [4]
    A. C. Lopes et al., Solid State Ionics 235, 42 (2013).CrossRefGoogle Scholar
  5. [5]
    C. V. Chanmal and J. P. Jog, Exp. Polymer Lett. 2, 294 (2008).CrossRefGoogle Scholar
  6. [6]
    J. Kulek, I. Szafraniak, B. Hilczer and M. Polomska, J. Non-Cryst. Solids 353, 4448 (2007).ADSCrossRefGoogle Scholar
  7. [7]
    B. Hilczer et al., J. Non-Cryst. Solids 305, 167 (2002).ADSCrossRefGoogle Scholar
  8. [8]
    D. A. Boysen, C. R. I. Chisholm, S. M. Haile and S. R. Narayanan, J. Electrochem. Soc. 147, 3610 (2000).CrossRefGoogle Scholar
  9. [9]
    W. C. Gan, W. H. Abd Majid and T. Furukawa, Polymer 82, 156 (2016).CrossRefGoogle Scholar
  10. [10]
    E. Ozkazanc, H. Y. Guney, T. Oskay and E. Tarcan, J. Appl. Polym. Sci. 109, 3878 (2008).CrossRefGoogle Scholar
  11. [11]
    E. Tuncer, M. Wegener and R. Gerhard-Multhaupt, J. Non-Cryst. Solids 351, 2917 (2005).ADSCrossRefGoogle Scholar
  12. [12]
    A. Gutina et al., J. Non-Cryst. Solids 235–237, 302 (1998).ADSCrossRefGoogle Scholar
  13. [13]
    Y. Ryabov, A. Gutina, V. Arkhipov and Y. Feldman, J. Phys. Chem. B 105, 1845 (2001).CrossRefGoogle Scholar
  14. [14]
    Y. E. Ryabov, A. Puzenko and Y. Feldman, Phys. Rev. B 69, 14204 (2004).ADSCrossRefGoogle Scholar
  15. [15]
    J. Martin et al., Chem. Mater. 29(8), 3515 (2017).ADSCrossRefGoogle Scholar

Copyright information

© The Korean Physical Society 2020

Authors and Affiliations

  1. 1.College of Future Creative Human ResourcesDaejin UniversityPocheonKorea

Personalised recommendations