Journal of the Korean Physical Society

, Volume 76, Issue 1, pp 34–43 | Cite as

Preparation and Characterization of Antimicrobial Bilayer Electrospun Nanofiber Membrane for Oily Wastewater Treatment

  • Hyuck-Jin Kwon
  • Jae-Ryung Cha
  • Chil Won LeeEmail author
  • Byung Doo Chin
  • Oh Young Kim
  • Seok-Ho HwangEmail author


A new bilayer electrospun nanofiber membranes consisting of a hydrophobic silver nanoparticle-based polyimide nanocomposite (Ag-PI) supporting layer and hydrophilic poly(vinyl alcohol) (PVA) barrier layer for oily wastewater treatment application has been presented. First of all, the Ag-PI electrospun nanofibrous supporting layer was fabricated through electrospinning and thermal treatment from polyamic acid containing silver carbamate. After that, the PVA electrospun nanofibrous barrier layer was constructed by electrospinning onto the supporting layer and chemical crosslinked. The silver nanoparticles were uniformly formed through thermal-reduction of silver carbamate in nanofiber, homogeneously. The constructed bilayer electrospun nanofiber membranes were characterized by the permeate flux, rejection rate, and antimicrobial activity of Escherichia coli and Staphylococcus aureus. It was found that they showed strong antimicrobial activity as well as a high flux and high rejection rate at low operating pressure.


Antibacterial Oil/Water separation Polyimide Bilayer electrospun nanofiber membrane Silver nanoparticles Electrospinning 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The present research was supported by the research fund of Dankook University in 2017. This study was also supported by the Soft Chemical Materials Research Center for Organic-Inorganic Multi-Dimensional Structures, which is funded by the Gyeonggi Regional Research Center Program (GRRC Dankook 2016-B01).


  1. [1]
    D. Sarkar, D. Datta, D. Sen and C. Bhattacharjee, Chem. Eng. Sci. 66, 2554 (2011).CrossRefGoogle Scholar
  2. [2]
    A. Asatekin and A. M. Mayes, Environ. Sci. Technol. 43, 4487 (2009).ADSCrossRefGoogle Scholar
  3. [3]
    S. J. Kim, S. H. Ko, K. H. Kang and J. Y. Han, Nat. Nanotechnol. 5, 297 (2010).ADSCrossRefGoogle Scholar
  4. [4]
    H. B. Park et al., Angew. Chem. Int. Ed. 47, 6019 (2008).CrossRefGoogle Scholar
  5. [5]
    J. Ju, T. Wang and Q. Wang, Colloids Surf. A. 481, 151 (2015).ADSCrossRefGoogle Scholar
  6. [6]
    X. Gao et al., Adv. Mater. 26, 1771 (2014).CrossRefGoogle Scholar
  7. [7]
    R. S. Barhate and S. Ramakrishna, J. Membr. Sci. 296, 1 (2007).CrossRefGoogle Scholar
  8. [8]
    S. Kaur et al., Langmuir 23, 13085 (2007).CrossRefGoogle Scholar
  9. [9]
    H. Ma, C. Burger, B. S. Hsiao and B. Chu, J. Mater. Chem. 21, 7507 (2011).CrossRefGoogle Scholar
  10. [10]
    X. Wang et al., J. Membr. Sci. 356, 110 (2010).CrossRefGoogle Scholar
  11. [11]
    S. Yu et al., J. Membr. Sci. 379, 164 (2011).CrossRefGoogle Scholar
  12. [12]
    L. Huang, J. T. Arena and J. R. McCutcheon, J. Membr. Sci. 499, 352 (2016).CrossRefGoogle Scholar
  13. [13]
    I. Sawada et al., J. Membr. Sci. 387–388, 1 (2012).CrossRefGoogle Scholar
  14. [14]
    X. Shen et al., RSC Adv. 7, 5262 (2017).CrossRefGoogle Scholar
  15. [15]
    S. H. Park et al., J. Membr. Sci. 499, 80 (2016).CrossRefGoogle Scholar
  16. [16]
    M. Zhang, K. Zhang, B. D. Gusseme and W. Verstraete, Water Research 46, 2077 (2012).CrossRefGoogle Scholar
  17. [17]
    L. Huang et al., J. Membr. Sci. 499, 269 (2016).CrossRefGoogle Scholar
  18. [18]
    S. Liu, F. Fang, J. Wu and K. Zhang, Desalination 375, 121 (2015).CrossRefGoogle Scholar
  19. [19]
    A. Nguyen, L. Zou and C. Priest, J. Membr. Sci. 454, 264 (2014).CrossRefGoogle Scholar
  20. [20]
    S. Chernousova and M. Epple, Angew. Chem. Int. Ed. 52, 1636 (2013).CrossRefGoogle Scholar
  21. [21]
    H. J. Kwon, J. R. Cha and M. S. Gong, Journal of CO2 utilization 27, 547 (2018).CrossRefGoogle Scholar
  22. [22]
    M. Jang, R. W. Field and K. Zhang, J. Membr. Sci. 471, 274 (2014).CrossRefGoogle Scholar
  23. [23]
    J. Li et al., J. Colloid Interface Sci. 484, 107 (2016).ADSCrossRefGoogle Scholar
  24. [24]
    D. Y. Zhang et al., J. Membr. Sci. 516, 83 (2016).CrossRefGoogle Scholar
  25. [25]
    B. V. Bhut, S. R. Wickramasinghe and S. M. Husson, J. Membr. Sci. 325, 176 (2008).CrossRefGoogle Scholar
  26. [26]
    H. Meng, Q. Cheng and C. Li, Appl. Surf. Sci. 303, 399 (2014).ADSCrossRefGoogle Scholar
  27. [27]
    J. chang et al., J. Mater. Sci. 50, 4104 (2015).ADSCrossRefGoogle Scholar
  28. [28]
    C. Cheng et al., J. Mater. Chem. B. 3, 4170 (2015).CrossRefGoogle Scholar
  29. [29]
    Y. S. Lee et al., Arch. Toxicol. 85, 1529 (2011).CrossRefGoogle Scholar
  30. [30]
    I. M. Vlasova, V. V. Zhuravleva, A. A. Vlasov and A. M. Saletsky, J. Mol. Struct. 1034, 89 (2013).ADSCrossRefGoogle Scholar

Copyright information

© The Korean Physical Society 2020

Authors and Affiliations

  1. 1.Department of ChemistryDankook UniversityCheonanKorea
  2. 2.Department of Polymer Science & EngineeringDankook UniversityYonginKorea

Personalised recommendations