Advertisement

Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

A Comparative Study of the Effects of Different Methods for Preparing RGO/Metal-Oxide Nanocomposite Electrodes on Supercapacitor Performance

  • 1 Accesses

Abstract

We have synthesized binary reduced-graphene-oxide (RGO)/metal-oxide (Ni(OH)2, NiO, MnO2, and Fe3O4) nanocomposites by using a facile hydrothermal process. The morphology and the structure of the composite are confirmed by using x-ray diffraction (XRD), high-resolution transmission electron microscope (HRTEM), field-emission scanning electron microscopy (FESEM) and Raman spectroscopy. The electric capacitances that have been achieved for the nanocomposites at a current density of 1 A/g are 55, 140, 150 and 183 F/g for RGO/Fe3O4, RGO/Ni(OH)2, RGO/NiO and RGO/MnO2, respectively. Among them, RGO/MnO2 having the best electric capacity was used for preparing a current collector electrode by using various methods to attach the RGO/MnO2 nanocomposite to nickel foams. The supercapacitor performances of differently prepared current collector electrodes were tested, and the electric capacities found with the nanocomposites having a current density of 1 A/g are 28, 53, 112 and 212 F/g when the two-step drop method, the hydrothermal method, the doctor-blade method and the nanocomposite-drop method were used, respectively. Compared to a single metal-oxide, RGO/MnO2 nanocomposites show a superior electric conductivity, an electric capacity and a charge/discharge efficiency for supercapacitor performance, indicating that the RGO/metal-oxide nanocomposite is a promising material for supercapacitor applications.

This is a preview of subscription content, log in to check access.

References

  1. [1]

    S. Chen et al., ACS Nano 4, 2822 (2010).

  2. [2]

    M. D. Stoller et al., Nano Lett. 8, 3498 (2008).

  3. [3]

    V. Subramanian et al., J. Phys. Chem. B 109, 20207 (2005).

  4. [4]

    Y. Lu et al., Carbon 63, 508 (2013).

  5. [5]

    P. Khiew et al., J. Chem. Eng. Mater. Sci. 7, 8 (2013).

  6. [6]

    C. Xiang et al., Power Sour. 226, 65 (2013).

  7. [7]

    S. R. C. Vivekchand et al., J. Chem. Sci. 120, 9 (2008).

  8. [8]

    S. Stankovich et al., Nature 442, 282 (2006).

  9. [9]

    L. L. Zhang, R. Zhou and X. S. Zhao, J. Mater. Chem. 20, 5983 (2010).

  10. [10]

    Y. Wang et al., J. Phys. Chem. C 113, 13103 (2009).

  11. [11]

    J. P. Zheng, P. J. Cygan and T. R. Jow, J. Electrochem. Soc. 142, 2699 (1995).

  12. [12]

    K. C. Liu and M. A. Anderson, J. Electrochem. Soc. 143, 124 (1996).

  13. [13]

    Y. S. Yoon, W. I. Cho, J. H. Lim and D. J. Choi, J. Power Sour. 101, 126 (2001).

  14. [14]

    B. E. Conway, V. Briss and J. Wojtowicz, J. Power Sour. 66, 1 (1997).

  15. [15]

    C. Lin, J. A. Ritter and B. N. Popov, J. Electrochem. Soc. 145, 4097 (1998).

  16. [16]

    L. Wang et al., Nanoscale 5, 3793 (2013).

  17. [17]

    H. L. Li et al., J. Power Sour. 190, 578 (2009).

  18. [18]

    M. Li and L. L. Yang, J. Mater. Sci. Mater. Electron. 26, 4875 (2015).

  19. [19]

    B. Senthilkumar, P. Thenamirtham and R. K. Selvan, Appl. Surf. Sci. 257, 9063 (2011).

  20. [20]

    V. Subramanian, S. C. Hall, P. H. Smith and B. Rambabu, Solid State Ion. 175, 511 (2004).

  21. [21]

    T. C. Liu, W. G. Pell and B. E. Conway, Electrochim. Acta 42, 3541 (1997).

  22. [22]

    D. P. Dubala et al., Electrochim. Acta 103, 103 (2013).

  23. [23]

    M. T. Greiner et al., Adv. Funct. Mater. 22, 4557 (2012).

  24. [24]

    M. T. Greiner et al., Nat. Mater. 11, 76 (2012).

  25. [25]

    G. R. Li et al., J. Mater. Chem. 21, 4217 (2011).

  26. [26]

    J. Chang et al., Adv. Funct. Mater. 23, 5074 (2013).

  27. [27]

    Y. l. Yoon, K. M. Kim and J. M. Ko, J. Korean Ceram. Soc. 45, 368 (2008).

  28. [28]

    B. L. Hu et al., Electrochim. Acta 107, 339 (2013).

  29. [29]

    D. L. Fang et al., Electrochim. Acta 81, 321 (2012).

  30. [30]

    J. Zhang, H. Zhang, Y. Cai and H. Zhang, RSC Adv. 6, 98010 (2016).

Download references

Acknowledgments

This work was supported by a National Research Foundation of Korea (NRF) grant funded by the Korea Government’s ministry of science and ICT (No. 2017R1A2B2006852).

Author information

Correspondence to Yoon-Hwae Hwang.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hong, J., Mengesha, T.T., Hong, S. et al. A Comparative Study of the Effects of Different Methods for Preparing RGO/Metal-Oxide Nanocomposite Electrodes on Supercapacitor Performance. J. Korean Phys. Soc. 76, 264–272 (2020). https://doi.org/10.3938/jkps.76.264

Download citation

Keywords

  • Supercapacitors
  • RGO
  • Metal oxide
  • Nanocomposites
  • Electrochemical performance