Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Indium Composition Dependence of Raman Spectroscopy and Photocurrent of InxGa1−xAs Strained Layers Grown by Using MOCVD

  • 3 Accesses

Abstract

The photocurrent and Raman were studied for the InxGa1−xAs strained layers grown on GaAs (001) substrates by using metalorganic chemical vapor deposition (MOCVD) with different indium compositions. The indium composition in the InxGa1−xAs strained layers was determined by using high-resolution X-ray diffraction (HR-XRD) and Vegard’s rule. The in-plane lattice constants and tensile strains of the InxGa1−xAs strained layers were evaluated as functions of the indium composition. The tensile strain of the InxGa1−xAs strained layers increases as the indium composition increases. The Raman spectra are observed to be dominated by the GaAs longitudinal optical (LO) phonon mode as the strongest peaks show up around 287∼292 cm−1. Moreover, the weak and broad spectral features in the range of 265∼270 cm−1 originate from the peaks associated with the GaAs transverse optical (TO) phonon mode. The Raman peak also shifts toward lower wave number with increasing indium compositions, which indicates the presence of tensile strain in the InxGa1−xAs layers. As the indium composition increases, the band-gap shift decreases for temperatures ranging from 30 to 300 K.

This is a preview of subscription content, log in to check access.

References

  1. [1]

    R. B. Kohlhaas et al., Appl. Phys. Lett. 112, 102101 (2018).

  2. [2]

    M. Piccardo et al., Appl. Phys. Lett. 112, 041106 (2018).

  3. [3]

    H. Li and X. Jia, Optics Commun. 415, 1 (2018).

  4. [4]

    R. W. M. Hoogeveen, R. J. van der A and A. P. H. Goede, Infrared Phys. Technol. 42, 1 (2001).

  5. [5]

    H. Dong et al., Superlattices Microst. 114, 331 (2018).

  6. [6]

    P. Jurczak et al., Infrared Phys. Technol. 81, 320 (2017).

  7. [7]

    Y. Zhang et al., Infrared Phys. Technol. 52, 52 (2009).

  8. [8]

    B. Du et al., J. Cryst. Growth 440, 1 (2016).

  9. [9]

    C. Li et al., Infrared Phys. Technol. 53, 173 (2010).

  10. [10]

    K. Uesugi, N. Morooka and I. Suemune, Appl. Phys. Lett. 74, 1254 (1999).

  11. [11]

    W. Li, M. Pessa and J. Likonen, Appl. Phys. Lett. 78, 2864 (2001).

  12. [12]

    L. Bellaiche and D. Vanderbilt, Phys. Rev. B 61, 7877 (2000).

  13. [13]

    F. Sökeland, M. Rohlfing, P. Krüger and J. Pollmann, Phys. Rev. B 68, 075203 (2003).

  14. [14]

    S. Hernandez et al., J. Appl. Phys. 93, 2659 (2003).

  15. [15]

    J. Groenen et al., Phys. Rev. B 58, 10452 (1998).

  16. [16]

    Ramon Cuscó et al., Alloys Comp. 634, 87 (2015).

  17. [17]

    J. Groenen et al., J. Appl. Phys. 82, 803 (1997).

  18. [18]

    L. Artús et al., Phys. Rev. B 54, 16373 (1996).

  19. [19]

    S. Hernández et al., J. Appl. Phys. 93, 9019 (2003).

  20. [20]

    P. Lautenschlager, M. Garriga, S. Logothetidis and M. Cardonna, Phys. Rev. B 35, 9174 (1987).

  21. [21]

    Y. P. Varshni, Physica 34, 149 (1967).

  22. [22]

    P. R. C. Kent and A. Zunger, Phys. Rev. Lett. 86, 2613 (2001).

Download references

Author information

Correspondence to T. S. Kim.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kang, S., Jeong, T.S. & Kim, T.S. Indium Composition Dependence of Raman Spectroscopy and Photocurrent of InxGa1−xAs Strained Layers Grown by Using MOCVD. J. Korean Phys. Soc. 76, 231–236 (2020). https://doi.org/10.3938/jkps.76.231

Download citation

Keywords

  • HR-XRD
  • Raman
  • Photocurrent
  • MOCVD
  • InGaAs