Journal of the Korean Physical Society

, Volume 76, Issue 1, pp 14–18 | Cite as

Dipole Transition Characteristics of 1s24f — 1s2ng (5 ≤ n ≤ 8) States for Li-Like Isoelectronic Sequence: Vanadium Through Zinc

  • Xin LiuEmail author
  • Jing-chao ZhangEmail author
  • Ting-ting Zhao
  • Meng Wang


The transition energies and wavelengths of 1s24f-1s2ng (5 ≤ n ≤ 8) states of lithium-like ions starting from vanadium and ending with zinc are determined by using the full-core-plus-correlation (FCPC) method. Our calculated values are compared with other available data and found to be in good agreement with them. The oscillator strengths of the 1s24f-1s2ng (5 ≤ n ≤ 8) dipole transition under three criteria are explored by using the FCPC method. The consistency of the three criteria proves the accuracy of the constructed wave function over all space. In this paper, the oscillator strength and the oscillator strength density of all discrete and continuous states from any given initial to final state are calculated, and the theoretical prediction of the spectral characteristics of the omnipotence threshold is realized.


Oscillator strength Transition energy High angular momentum 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the National Natural Science Foundation of China (Grant No 21603185). We are grateful to Dr. Kwong T. Chung for his hospitality.


  1. [1]
    J. D. Gillaspy, J. Phys. B 34, R93 (2001).ADSCrossRefGoogle Scholar
  2. [2]
    S. Z. Liu et al., Acta Phys. Sin. 61, 093106 (2012) (in Chinese).Google Scholar
  3. [3]
    L. Natarajan, A. Natarajan and R. Kadrekar, Phys. Rev. A 82, 062514 (2010).ADSCrossRefGoogle Scholar
  4. [4]
    Y. S. Kozhedub et al., Phys. Rev. A 81, 042513 (2010).ADSCrossRefGoogle Scholar
  5. [5]
    Z. C. Yan and G. W. F. Drake, Phys. Rev. A 66, 042504 (2002).ADSCrossRefGoogle Scholar
  6. [6]
    K. T. Chung, Phys. Rev. A 44, 5421 (1991).ADSCrossRefGoogle Scholar
  7. [7]
    K. T. Chung, Phys. Rev. A 45, 7766 (1992).ADSCrossRefGoogle Scholar
  8. [8]
    J. Cai, W. W. Yu and N. Zhang, Chin. Phys. Lett. 31, 093101 (2014).ADSCrossRefGoogle Scholar
  9. [9]
    Y. Wang et al., J. Atom. Mol. Phys. 34, 37 (2017) (in Chinese).Google Scholar
  10. [10]
    J. Y. Li, D. J. Ding and Z. W. Wang, Phys. Rev. A 88, 042511 (2013).ADSCrossRefGoogle Scholar
  11. [11]
    J. Y. Li and Z. W. Wang, Chin. Phys. B 23, 013201 (2014).ADSCrossRefGoogle Scholar
  12. [12]
    W. W. Yu et al., Chin. Phys. B 21, 073102 (2012).ADSCrossRefGoogle Scholar
  13. [13]
    X. Liu, J. C. Zhang and Z. W. Wang, Results Phys. 12, 398 (2019).ADSCrossRefGoogle Scholar
  14. [14]
    R. D. Cowan, The Theory of Atomic Structure and Spectra (University of California Press, Berkeley, 1981), p. 401.Google Scholar
  15. [15]
    W. R. Johson and K. T. Cheng, J. Phys. B 12, 863 (1979).ADSCrossRefGoogle Scholar
  16. [16]
    V. A. Zilitis, J. Opt. Spec. 55, 127 (1984).ADSGoogle Scholar
  17. [17]
    H. L. Zhang, D. H. Sampson and C. J. Fontes, At. Data Nucl. Data Tables 44, 31 (1990).ADSCrossRefGoogle Scholar
  18. [18]
    K. M. Aggarwal and F. P. Keenan, At. Data Nucl. Data Tables 98, 1003 (2012).ADSCrossRefGoogle Scholar

Copyright information

© The Korean Physical Society 2020

Authors and Affiliations

  1. 1.Key Laboratory for Microstructural Material Physics of Hebei Province, School of ScienceYanshan UniversityQinhuangdaoChina
  2. 2.Department of PhysicsHebei Normal University of Science & TechnologyQinhuangdaoChina
  3. 3.School of Safety EngineeringShenyang Aerospace UniversityShenyangChina

Personalised recommendations