Advertisement

Journal of the Korean Physical Society

, Volume 76, Issue 1, pp 1–7 | Cite as

Two Local States of Ambient Water

  • Yongjin Lee
  • YoungKyu Lee
  • SeongMin Jeong
  • Anupam Kumar
  • YongSeok JhoEmail author
Article
  • 13 Downloads

Abstract

The non-monotonic trends of thermodynamic response functions have long been a mystery of water. The idea, that water may be a mixture of two local states, came out more than a century ago to explain the origin of the non-monotonic behaviors. Recently, this idea is materialized through the hypothesis of the second critical point of water and then the anomalies are outcomes of critical fluctuation. Although the typical macroscopic heterogeneity (Widom line) of critical fluctuation stays in the vicinity of the critical point, as we have previously shown that the microscopic heterogeneity is identified far from it which extends the linear heterogeneity, the Widom line, to the areal one as a Widom Delta. With this background, we search for two local states of the ambient water. Distinct states in ambient condition are not to be contrasted by a single strong feature such as density but they are expressed by a combination of weak features that reflects locally correlated structures. In this work, we identify the formation of local bicontinuous micro-domain formations of water attributing its softness by using machine learning order parameters. Interestingly, the radial distribution functions are similar to two phases in the liquid-liquid phase transition and they are well fitted by the two-state model. The hard-label domain is dominant at a lower temperature but changes its label to a more fluctuating soft-label domain at high temperature. There exist crossover behaviors around 310–320 K. At sufficiently high temperatures, near the liquid-gas phase transition, all water molecules become homogeneous.

Keywords

Water Anomaly Liquid-Liquid Phase Separation Widom Delta Machine Learning 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work was supported by Creative Materials Discovery Program through the National Research Foundation of Korea (NRF) funded by Ministry of Science and ICT (NRF-2018M3D1A1058624) and NRF-2018R1A2B6006262.

References

  1. [1]
    C. A. Angell and H. Kanno, Science 193, 1121 (1976).ADSCrossRefGoogle Scholar
  2. [2]
    A. I. Fisenko and N. P. Malomuzh, Chem. Phys. 345, 164 (2008).CrossRefGoogle Scholar
  3. [3]
    H. Tanaka, Faraday Discuss. 167, 9 (2013).ADSCrossRefGoogle Scholar
  4. [4]
    A. Nilsson and L. G. M. Pettersson, Nat. Commun. 6, 8998 (2015).ADSCrossRefGoogle Scholar
  5. [5]
    P. Gallo et al., Chem. Rev. 116, 7463 (2016).CrossRefGoogle Scholar
  6. [6]
    L. G. M. Pettersson, R. H. Henchman and A. Nilsson, Chem. Rev. 116, 7459 (2016).CrossRefGoogle Scholar
  7. [7]
    P. H. Poole, F. Sciortino, U. Essmann and H. E. Stanley, Nature 360, 324 (1992).ADSCrossRefGoogle Scholar
  8. [8]
    S. Sastry et al., Phys. Rev. E 53, 6144 (1996).ADSCrossRefGoogle Scholar
  9. [9]
    M. Y. Ha et al., J. Phys. Chem. Lett. 9, 1743 (2018).Google Scholar
  10. [10]
    J. L. F. Abascal and C. Vega, J. Chem. Phys. 123, 234505 (2005).ADSCrossRefGoogle Scholar
  11. [11]
    M. A. González and J. L. F. Abascal, J. Chem. Phys. 135, 224516 (2011).ADSCrossRefGoogle Scholar
  12. [12]
    G. Lamoureux et al., Chem. Phys. Lett. 418, 245 (2006).ADSCrossRefGoogle Scholar
  13. [13]
    C. J. Tainter, P. A Pieniazek, Y-S. Lin and J. L. Skinner, J. Chem. Phys. 134, 184501 (2011).ADSCrossRefGoogle Scholar
  14. [14]
    C. L. Zhao et al., J. Phys. Chem. B 123, 4594 (2019).CrossRefGoogle Scholar
  15. [15]
    E. D. Cubuk, et al., Phys. Rev. Lett. 114, 108001 (2015).ADSCrossRefGoogle Scholar
  16. [16]
    S. S. Schoenholz et al., Nat. Phys. 12, 469 (2016).CrossRefGoogle Scholar
  17. [17]
    P. J. Steinhardt, D. R. Nelson and M. Ronchetti, Phys. Rev. B 28, 784 (1983).ADSCrossRefGoogle Scholar
  18. [18]
    C. Rycroft, Chaos 4, 19 (2009).Google Scholar
  19. [19]
    E. Shiratani and M. Sasai, J. Chem. Phys. 104, 7671 (1996).ADSCrossRefGoogle Scholar
  20. [20]
    C. C. Chang, C. J. Lin, ACM T. Intel. Syst. Tec. 2, 27:1 (2011).Google Scholar
  21. [21]
    A. K. Soper and M. A. Ricci, Phys. Rev. Lett. 84, 2881 (2000).ADSCrossRefGoogle Scholar
  22. [22]
    V. P. Voloshin and Y. I. Naberukhin, J. Struct. Chem+ 50, 78 (2009).CrossRefGoogle Scholar
  23. [23]
    D. Chandler, Nature 437, 640 (2005).ADSCrossRefGoogle Scholar
  24. [24]
    M. Y. Ha et al., arXiv:1902.08360 (2019).Google Scholar

Copyright information

© The Korean Physical Society 2020

Authors and Affiliations

  • Yongjin Lee
    • 1
  • YoungKyu Lee
    • 2
  • SeongMin Jeong
    • 3
  • Anupam Kumar
    • 4
  • YongSeok Jho
    • 5
    Email author
  1. 1.Department of PhysicsPohang University of Science and TechnologyPohangKorea
  2. 2.Department of Physics and Research Institute of Natural ScienceGyeongsang National UniversityJinjuKorea
  3. 3.IBS Center for Soft and Living MatterUlsan National Institute of Science and Technology (UNIST)UlsanKorea
  4. 4.Institute of Chemical ProcessesSeoul National UniversitySeoulKorea
  5. 5.Department of Physics and Research Institute of Natural ScienceGyeongsang National UniversityJinjuKorea

Personalised recommendations