Advertisement

Journal of the Korean Physical Society

, Volume 75, Issue 11, pp 924–928 | Cite as

Scanning Tunneling Microscope Study on C2H2 Adsorption on a Ge(100) Surface

  • Geunseop LeeEmail author
  • Kyeongseong Chae
Article
  • 17 Downloads

Abstract

Adsorption configurations of C2H2 on the Ge(001) surface at room temperature were investigated using scanning tunneling microscope (STM). Two adsorption features, occupying one dimer and two dimers, respectively, were observed as major species. Both of them appear in rounded or elongated bean shapes in filled-state images. In empty-state images, they reveal atomically resolved details: two and four local maxima for the one-dimer and the two-dimer features, respectively. The empty-state double maximum of the one-dimer feature confirms the adsorption of a C2H2 molecule on top of a dimer. Based on the empty-state quadruple maximum of the two-dimer feature, we propose the adsorption of a pair of C2H2 molecules across the ends of two adjacent dimers in the same dimer row (paired end-bridge). This differs from the previous interpretation of the two-dimer feature as a single C2H2 molecule adsorbed in a tetra-σ-bonding configuration. We also observed C2H2 molecules adsorbed in the unpaired end-bridge configuration, but none in tetra-σ-bonding configurations. These observations and interpretations are consistent with the energetics predicted by using theoretical calculations.

Keywords

Acetylene Adsorption Scanning tunneling microscopy Germanium Ge(100) surface 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work was supported by INHA UNIVERSITY Research Grant.

References

  1. [1]
    K. W. Hipps, Science 294, 536 (2001).CrossRefGoogle Scholar
  2. [2]
    S. F. Bent, Surf. Sci. 500, 879 (2002).ADSCrossRefGoogle Scholar
  3. [3]
    M. Nishijima, J. Yoshinobu, H. Tsuda and M. Onchi, Surf. Sci. 192, 383 (1987).ADSCrossRefGoogle Scholar
  4. [4]
    A. J. Mayne et al., Surf. Sci. 284, 247 (1993).ADSCrossRefGoogle Scholar
  5. [5]
    L. Li et al., Phys. Rev. B 56, 4648 (1997).ADSCrossRefGoogle Scholar
  6. [6]
    S. H. Xu et al., Phys. Rev. B 60, 11586 (1999).ADSCrossRefGoogle Scholar
  7. [7]
    S. H. Xu et al., Phys. Rev. Lett. 84, 939 (2000).ADSCrossRefGoogle Scholar
  8. [8]
    F. Matsui, H. W. Yeom, I. Matsuda and T. Ohta, Phys. Rev. B 62, 5036 (2000).ADSCrossRefGoogle Scholar
  9. [9]
    D. C. Sorescu and K. D. Jordan, J. Phys. Chem. B 104, 8259 (2000).CrossRefGoogle Scholar
  10. [10]
    Y. Morikawa, Phys. Rev. B 63, 033405 (2001).ADSCrossRefGoogle Scholar
  11. [11]
    W. Kim et al., Phys. Rev. B 64, 193313 (2001).ADSCrossRefGoogle Scholar
  12. [12]
    W. Kim et al., Surf. Sci. 514, 376 (2002).ADSCrossRefGoogle Scholar
  13. [13]
    S. Mezhenny et al., Chem. Phys. Lett. 344, 7 (2001).ADSCrossRefGoogle Scholar
  14. [14]
    J.-H. Cho, L. Kleinman, C. T. Chan and K. S. Kim, Phys. Rev. B 63, 073306 (2001).ADSCrossRefGoogle Scholar
  15. [15]
    F. Wang, D. C. Sorescu and K. D. Jordan, J. Phys. Chem. B 106, 1316 (2002).CrossRefGoogle Scholar
  16. [16]
    P. L. Silvestrelli, F. Toigo and F. Ancilotto, J. Chem. Phys. 114, 8539 (2001).ADSCrossRefGoogle Scholar
  17. [17]
    R. Terborg et al., Phys. Rev. B 66, 085333 (2002).ADSCrossRefGoogle Scholar
  18. [18]
    R. A. Wolkow, Annu. Rev. Phys. Chem. 50, 413 (1999).ADSCrossRefGoogle Scholar
  19. [19]
    M. Shimomura et al., Surf. Sci. 504, 19 (2002).ADSCrossRefGoogle Scholar
  20. [20]
    A. Kim, D. S. Choi, J. Y. Lee and S. Kim, J. Phys. Chem. B 108, 3256 (2004).CrossRefGoogle Scholar
  21. [21]
    G. Lee and K. Chae, J. Korean Phys. Soc. 48, 437 (2006).Google Scholar
  22. [22]
    W. A. Hofer, A. J. Fisher and R. A. Wolkow, Surf. Sci. 475, 83 (2001).ADSCrossRefGoogle Scholar
  23. [23]
    A. Kim et al., J. Chem. Phys. 117, 10215 (2002).ADSCrossRefGoogle Scholar
  24. [24]
    W. Kim et al., Surf. Sci. 538, L477 (2003).CrossRefGoogle Scholar
  25. [25]
    P. L. Silvestrelli et al., Phys. Rev. B 68, 235306 (2003).ADSCrossRefGoogle Scholar
  26. [26]
    T. Mineva, R. Nathaniel, K. L. Kostov and W. Widdra, J. Chem. Phys. 125, 194712 (2006).ADSCrossRefGoogle Scholar
  27. [27]
    P. T. Czekala, H. Lin, W. A. Hofer and A. Gulans, Surf. Sci. 605, 1341 (2011).ADSCrossRefGoogle Scholar
  28. [28]
    G. Lee, K. Chae, E. Cho and W. Kim, Chem. Phys. Lett. 502, 198 (2011).ADSCrossRefGoogle Scholar
  29. [29]
    J. H. Cho and L. Kleinman, J. Chem. Phys. 119, 2820 (2003).ADSCrossRefGoogle Scholar
  30. [30]
    R. Miotto and A. C. Ferraz, Surf. Sci. 513, 422 (2002).ADSCrossRefGoogle Scholar
  31. [31]
    R. Miotto, A. C. Ferraz and G. P. Srivastava, Phys. Rev. B 65, 075401 (2002).ADSCrossRefGoogle Scholar
  32. [32]
    X. L. Fan et al., Chem. Phys. Lett. 514, 109 (2011).ADSCrossRefGoogle Scholar
  33. [33]
    T. Fukuda and T. Ogino, Appl. Phys. A 66, S969 (1998).ADSCrossRefGoogle Scholar

Copyright information

© The Korean Physical Society 2019

Authors and Affiliations

  1. 1.Department of PhysicsInha UniversityIncheonKorea
  2. 2.Department of PhysicsChonnam National UniversityGwangjuKorea

Personalised recommendations