Advertisement

Journal of the Korean Physical Society

, Volume 75, Issue 11, pp 903–908 | Cite as

Head-on Collision Between Two Envelope Solitary Waves in a Granular Medium

  • Wen-Qing Du
  • Jian-An Sun
  • Juan-Fang Han
  • Wen-Shan DuanEmail author
  • Yang-Yang Yang
  • Xin JiangEmail author
Article
  • 11 Downloads

Abstract

We investigated the head-on collision between two envelope solitary waves. Head-on collisions between two envelope solitary waves are first discussed in one-dimension (1D) granular chains. The interesting result is that no phase shift or phase delay detected after the head-on collision between two envelope solitary waves. The maximum amplitude during the head-on collision between two envelope solitary waves is also found to be less than the sum of the amplitudes of the two envelope solitary waves, but is larger than the amplitude of the either of the envelope solitary waves.

Keywords

Granular Envelope solitary wave Head-on collision Phase shift Maximum amplitude 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work was supported by the “Strategic Priority Research Program” of the Chinese Academy of Sciences (Grant No. XDA01020304) and the National Natural Science Foundation of P. R. China (Grant No.: 91026005, 11547304, 11275156, 11047010, 61162017).

References

  1. [1]
    M. Remoissenet, Waves Called Solitons, Concepts and Experiments (Springer-Verlag, Berlin, Heidelberg, GmbH, 1994).zbMATHCrossRefGoogle Scholar
  2. [2]
    H. Hertz, J. Reine Angew. Math. 92, 156 (1881).Google Scholar
  3. [3]
    V. F. Nesterenko, J. Appl. Mech. Tech. Phys. 24, 733 (1983).ADSCrossRefGoogle Scholar
  4. [4]
    A. N. Lazaridi and V. F. Nesterenko, J. Appl. Mech. Tech. Phys. 26, 405 (1985).ADSCrossRefGoogle Scholar
  5. [5]
    V. F. Nesterenko, J. Phys. IV 04, 729 (1994).Google Scholar
  6. [6]
    G. Friesecke and J. A. D. Wattis, Commun. Math. Phys. 161, 391 (1884).ADSCrossRefGoogle Scholar
  7. [7]
    R. S. Sinkovits and S. Sen, Phys. Rev. Lett. 74, 2686 (1995).ADSCrossRefGoogle Scholar
  8. [8]
    S. Sen and R. S. Sinkovits, Phys. Rev. E 54, 6857 (1996).ADSCrossRefGoogle Scholar
  9. [9]
    C. Coste, E. Falcon and S. Fauve, Phys. Rev. E 56, 6104 (1997).ADSCrossRefGoogle Scholar
  10. [10]
    S. Sen, M. Manciu and J. D. Wright, Phys. Rev. E 57, 2386 (1998).ADSCrossRefGoogle Scholar
  11. [11]
    C. Coste and B. Gilles, Eur. Phys. J. B 7, 155 (1999).ADSCrossRefGoogle Scholar
  12. [12]
    E. Hinch and S. Saint-Jean, Proc. R. Soc. Lond. A 455, 3201 (1999).ADSCrossRefGoogle Scholar
  13. [13]
    A. Chatterjee, Phys. Rev. E 59, 5912 (1999).ADSCrossRefGoogle Scholar
  14. [14]
    G. Friesecke and R. L. Pego, Nonlinearity 12, 1601 (1999).ADSMathSciNetCrossRefGoogle Scholar
  15. [15]
    G. Friesecke and R. L. Pego, Nonlinearity 15, 1343 (2002).ADSMathSciNetCrossRefGoogle Scholar
  16. [16]
    G. Friesecke and R. L. Pego, Nonlinearity 17, 207 (2004).ADSMathSciNetCrossRefGoogle Scholar
  17. [17]
    G. Friesecke and R. L. Pego, Nonlinearity 17, 229 (2004).ADSMathSciNetCrossRefGoogle Scholar
  18. [18]
    M. Manciu, V. Tehan and S. Sen, Chaos 10, 658 (2000).ADSCrossRefGoogle Scholar
  19. [19]
    V. F. Nesterenko, Dynamics of Heterogeneous Materials (Springer-Verlag, New York, 2001).CrossRefGoogle Scholar
  20. [20]
    S. Sen and M. Manciu, Phys. Rev. E 64, 056605 (2001).ADSCrossRefGoogle Scholar
  21. [21]
    J. Hong, Phys. Rev. Lett. 94, 108001 (2005).ADSCrossRefGoogle Scholar
  22. [22]
    C. Daraio and V. F. Nesterenko, Phys. Rev. E 73, 026612 (2006).ADSCrossRefGoogle Scholar
  23. [23]
    M. A. Porter et al., Phys. Rev. E 77, 015601 (2008).ADSCrossRefGoogle Scholar
  24. [24]
    S. Sen et al., Phys. Rep. 462, 21 (2008).ADSMathSciNetCrossRefGoogle Scholar
  25. [25]
    S. Sen and T. R. Mohan, Phys. Rev. E 79, 036603 (2009).ADSCrossRefGoogle Scholar
  26. [26]
    Y. Starosvetsky and A. F. Vakakis, Phys. Rev. E 82, 026603 (2010).ADSMathSciNetCrossRefGoogle Scholar
  27. [27]
    K. R. Jayaprakash, Y. Starosvetsky and A. F. Vakakis, Phys. Rev. E 83, 036606 (2011).ADSMathSciNetCrossRefGoogle Scholar
  28. [28]
    F. Santibanez et al., Phys. Rev. E 84, 026604 (2011).ADSCrossRefGoogle Scholar
  29. [29]
    I. Szelengowicz et al., Phys. Rev. E 87, 032204 (2013).ADSCrossRefGoogle Scholar
  30. [30]
    A. M. Tichler et al., Phys. Rev. Lett. 111, 048001 (2013).ADSCrossRefGoogle Scholar
  31. [31]
    A. H. Clark, A. J. Petersen, L. Kondic and R. P. Behringer, Phys. Rev. Lett. 114, 144502 (2015).ADSCrossRefGoogle Scholar
  32. [32]
    M. Przedborski and S. C. Anco, J. Math. Phys. 58, 091502 (2017).ADSMathSciNetCrossRefGoogle Scholar
  33. [33]
    M. A. Hasan and S. J. Nemat-Nasser, Mech. Phys. Solids 101, 1 (2017).ADSMathSciNetCrossRefGoogle Scholar
  34. [34]
    Y. Starosvetsky, K. R. Jayaprakash, M. A. Hasan and A. F. Vakakis, Topics on the Nonlinear Dynamics and Acoustics of Ordered Granular Media (World Scientific Publishing Co. Pte. Ltd., 2017), p. 640.Google Scholar
  35. [35]
    C. Chong and P. G. Kevrekidis, Coherent Structures in Granular Crystals, from Experiment and Modelling to Computation and Mathematical Analysis (Springer Briefs in Physics. Cham, Springer, Switzerland, 2018).Google Scholar
  36. [36]
    V. F. Nesterenko, Phil. Trans. R. Soc. A 376, 20170130 (2018).ADSCrossRefGoogle Scholar
  37. [37]
    B. Tang, Z. H. Deng and K. Deng, Commun. Theor. Phys. 68(5), 627 (2017).ADSMathSciNetCrossRefGoogle Scholar
  38. [38]
    A. Hoffman and C. E. Wayne, Nonlinearity 21, 2911 (2008).ADSMathSciNetCrossRefGoogle Scholar
  39. [39]
    A. Stefanov and P. G. Kevrekidis, Nonlinearity 26, 539 (2013).ADSMathSciNetCrossRefGoogle Scholar
  40. [40]
    Y. Shen, P. G. Kevrekidis, S. Sen and A. Hoffman, Phys. Rev. E 90, 022905 (2014).ADSCrossRefGoogle Scholar
  41. [41]
    Y. Takato and S. Sen, Europhys. Lett. 100, 24003 (2012).ADSCrossRefGoogle Scholar
  42. [42]
    C. H. Su and R. M. Mirie, J. Fluid Mech. 98, 509 (1980).ADSMathSciNetCrossRefGoogle Scholar
  43. [43]
    C. S. Gardner, J. M. Greener, M. D. Kruskal and R. M. Miura, Phys. Rev. Lett. 19, 1095 (1967).ADSCrossRefGoogle Scholar
  44. [44]
    M. A. Shay, J. F. Drake and B. Dorland, J. Comput. Phys. 226, 571 (2007).ADSCrossRefGoogle Scholar
  45. [45]
    P. L. Israelevich and L. Ofman, Adv. Space Res. 48, 25 (2011).ADSCrossRefGoogle Scholar
  46. [46]
    E. F. El-Shamy, W. M. Moslem and P. K. Shukl, Phys. Lett. A 374, 290 (2009).ADSCrossRefGoogle Scholar
  47. [47]
    S. K. El-Labany, E. F. El-Shamy, R. Sabry and M. Shokry, Astrophys. Space Sci. 325, 201 (2010).ADSCrossRefGoogle Scholar
  48. [48]
    P. Chatterjee et al., Phys. Plasmas 17, 122314 (2010).ADSCrossRefGoogle Scholar
  49. [49]
    U. N. Ghosh, P. Chatterjee and R. Roychoudhury, Phys. Plasmas 19, 012113 (2012).ADSCrossRefGoogle Scholar
  50. [50]
    M. K. Ghorui, P. Chatterje and C. S. Wong, Space Sci. 343, 639 (2013).ADSCrossRefGoogle Scholar
  51. [51]
    P. Harvey, C. Durniak, D. Samsonov and G. Morfill, Phys. Rev. E 81, 057401 (2010).ADSCrossRefGoogle Scholar
  52. [52]
    S. K. Sharma, A. Boruah and H. Bailung, Phys. Rev. E 89, 013110 (2014).ADSCrossRefGoogle Scholar
  53. [53]
    J. Zhang et al., Phys. Plasmas 21, 103706 (2014).ADSCrossRefGoogle Scholar
  54. [54]
    F. G. Wang, Y. Y. Yang, J. F. Fang, and W. S. Duan, Chin. Phys. B 27, 044501 (2018).ADSCrossRefGoogle Scholar
  55. [55]
    H. Zhang, X. Qi, W. S. Duan and L. Yang, Sci. Rep. 5, 14239 (2015).ADSCrossRefGoogle Scholar
  56. [56]
    H. Zhang, W. S. Duan, X. Qi and L. Yang, Sci. Rep. 6, 21214 (2016).ADSCrossRefGoogle Scholar
  57. [57]
    G. Schneider, H. Uecker and M. Wand, J. Differ. Eq. Appl. 17(03), 279 (2011).CrossRefGoogle Scholar
  58. [58]
    T. Kakutani, H. Oni, T. Taniuti and C. C. Wei, J. Phys. Soc. Japan 24, 941 (1968).ADSCrossRefGoogle Scholar
  59. [59]
    S. W. Liu, Y. Y. Yang, W. S. Duan and L. Yang, Phys. Rev. E 92, 013202 (2015).ADSCrossRefGoogle Scholar
  60. [60]
    Y. Y. Yang et al., AIP Adv. 6, 075317 (2016).ADSCrossRefGoogle Scholar
  61. [61]
    G. Huang, Z. P. Shi and Z. Xu, Phys. Rev. B 47, 14561 (1993).ADSCrossRefGoogle Scholar

Copyright information

© The Korean Physical Society 2019

Authors and Affiliations

  1. 1.Graduate School of China Academy of Engineering PhysicsBeijingChina
  2. 2.College of Physics and Electronic Engineering and Joint Laboratory of Atomic and Molecular Physics of NWNU & IMP CASNorthwest Normal UniversityLanzhouChina
  3. 3.Institute of Modern PhysicsChinese Academy of SciencesLanzhouChina
  4. 4.Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology & EngineeringChinese Academy of SciencesNingboChina

Personalised recommendations