Skip to main content
Log in

Development of a Theoretical Model for Strong-Field Photoemission in a 2-Dimensional Conducting Sheet

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

We propose a theoretical model simulating ultrafast electron emission at the edge of a two-dimensional conducting sheet due to a strong field tunneling process in the presence of a static electric field. Under the assumption of a charge distribution following the square root law associated with a Sommerfeld half plane, the electric field was found to exhibit square-root dependence. The electron emission yield was estimated based on a Fowler-Nordheim tunneling, from which the resultant current flow was calculated by using the quasi-classical model. Importantly, we considered the number of the recoil electrons that do not contribute to the net current. We found a large variation in the nonlinearity of the power-dependence of the net field-emission yield; this is due to the combined contributions of the laser field irradiation and a static electric field. The validity of our model was confirmed based on experimental results obtained using devices with a nanometer-sized gap fabricated on a single layer of graphene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Ropers et al., Phys. Rev. Lett. 98, 043907 (2007).

    Article  ADS  Google Scholar 

  2. R. Bormann et al., Phys. Rev. Lett. 105, 147601 (2010).

    Article  ADS  Google Scholar 

  3. P. Hommelhoff, Y. Sortais, A. Aghajani-Talesh and M. A. Kasevich, Phys. Rev. Lett. 96, 077401 (2006).

    Article  ADS  Google Scholar 

  4. D. J. Park et al., Phys. Rev. Lett. 109, 244803 (2012).

    Article  ADS  Google Scholar 

  5. B. Piglosiewicz et al., Nat. Photon. 8, 37 (2013).

    Article  ADS  Google Scholar 

  6. A. Tong, Y. Zhou and P. Lu, Opt. Express 23, 15774 (2015).

    Article  ADS  Google Scholar 

  7. G. Herink, D. R. Solli, M. Gulde and C. Ropers, Nature 483, 190 (2012).

    Article  ADS  Google Scholar 

  8. M. Krüger, M. Schenk and P. Hommelhoff, Nature 475, 78 (2011).

    Article  Google Scholar 

  9. D. J. Park et al., Ann. Phys. 525, 135 (2013).

    Article  Google Scholar 

  10. T. Higuchi et al., Nature 550, 224 (2017).

    Article  ADS  Google Scholar 

  11. M. Sivis, M. Duwe, B. Abel and C. Ropers, Nat. Phys. 9, 304 (2013).

    Article  Google Scholar 

  12. B. H. Son et al., ACS Photon. 5, 3943 (2018).

    Article  Google Scholar 

  13. Y. D. Kim et al., Nat. Nanotechnol. 10, 676 (2015).

    Article  ADS  Google Scholar 

  14. G. W. Kim et al., J. Korean Phys. Soc. 73, 1698 (2018).

    Article  ADS  Google Scholar 

  15. J. D. Buron et al., Nano Lett. 12, 5074 (2012).

    Article  ADS  Google Scholar 

  16. M. A. Seo et al., Nat. Photon. 3, 152 (2009).

    Article  ADS  Google Scholar 

  17. S. V. Yalunin, M. Gulde and C. Ropers, Phys. Rev. B 84, 195426 (2011).

    Article  ADS  Google Scholar 

  18. M. Krüger et al., New J. Phys. 14, 085019 (2012).

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This research was supported by Hallym University Research Fund, 2018 (HRF-201812-018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Doo Jae Park.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, D.J., Ahn, Y.H. Development of a Theoretical Model for Strong-Field Photoemission in a 2-Dimensional Conducting Sheet. J. Korean Phys. Soc. 75, 882–886 (2019). https://doi.org/10.3938/jkps.75.882

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.75.882

Keywords

Navigation