Advertisement

Journal of the Korean Physical Society

, Volume 75, Issue 10, pp 827–831 | Cite as

Detection of Chemical Warfare Agent Simulants by using Fluorescence Modulation of Rhodamine 6G/Ag Nanowires

  • Byeong Geun Jeong
  • Dae Young Park
  • Kihyuk Yang
  • Sung-Jin An
  • Chulho Park
  • Chanwoo Lee
  • Hyang Mi Yu
  • Mun Seok JeongEmail author
  • Seung Mi Lee
Article
  • 13 Downloads

Abstract

Efficient detection of chemical warfare agents (CWAs) has become indispensable because of the constantly increasing widespread use of CWAs to inflict mass deaths. The commonly used mass spectrometry for CWA detection has a few drawbacks, such as the complexity of equipment and out-situ analysis; thus, a simple and intuitive detection method is required to overcome these challenges. Accordingly, in this study, we fabricate Rhodamine 6G (R6G)/Ag nanowires (NWs) for CWA detection based on the sensitive fluorescence changes of R6G caused by the adsorption of different CWA derivatives. In addition, the localized surface plasmon of Ag NWs is applied to enhance the sensitivity of detection due to emission enhancement. The experimental results indicate that the simple CWA detection method proposed in this study can efficiently detect phosphate-type CWAs.

Keywords

Chemical warfare agents Rhodamine 6G Silver nanowires Localized surface plasmon 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work was supported by the Agency for Defense Development through Chemical and Biological Research Center and the National Research Foundation of Korea (NRF) grant funded by the Korea Governments Ministry of Science and ICT (MSIT) (NRF-2019R1A2 B5B02070657). J. B. G., P. D. Y. and K. Y. contributed to this work equally.

References

  1. [1]
    R. C. Gupta, Handbook of Toxicology of Chemical Warfare Agents (Academic Press, London, 2015).Google Scholar
  2. [2]
    K. Ganesan, S. Raza and R. Vijayaraghavan, J. Pharm. Bioall. Sci. 2, 166 (2010).CrossRefGoogle Scholar
  3. [3]
    S. Chauhan et al., Environ. Toxicol. Phar. 26, 113 (2008).CrossRefGoogle Scholar
  4. [4]
    R. Puglisi, A. Pappalardo, A. Gulino and G. T. Sfrazzetto, ACS Omega 4, 7550 (2019).CrossRefGoogle Scholar
  5. [5]
    C. He et al., Chem. Commun. 46, 7536 (2010).CrossRefGoogle Scholar
  6. [6]
    J-S. Yang and T. M. Swager, J. Am. Chem. Soc. 120, 11864 (1998).CrossRefGoogle Scholar
  7. [7]
    N. Xu et al., New J. Chem. 42, 13367 (2018).CrossRefGoogle Scholar
  8. [8]
    R. F. Kubin and A. N. Fletcher, J. Lumin. 27, 455 (1982).CrossRefGoogle Scholar
  9. [9]
    Y. Kievsky et al., J. Chem. Phys. 128, 151102 (2008).ADSCrossRefGoogle Scholar
  10. [10]
    J. Sýkora et al., J. Phys. Chem. B 111, 5869 (2007).CrossRefGoogle Scholar
  11. [11]
    F. L. Arbeloa, P. R. Ojeda and I. L. Arbeloa, J. Chem. Soc., Faraday Trans. 2 84, 1903 (1988).CrossRefGoogle Scholar
  12. [12]
    R. Vogel et al., Macromolecules 35, 2063 (2002).ADSCrossRefGoogle Scholar
  13. [13]
    H. S. Lee et al., Phys. Rev. Lett. 115, 226801 (2015).ADSCrossRefGoogle Scholar
  14. [14]
    S. Bang et al., Nano Lett. 18, 2316 (2018).ADSCrossRefGoogle Scholar
  15. [15]
    H. Kim, H. R. Byun, B. Kim and M. S. Jeong, J. Korean Phys. Soc. 73, 1725 (2018).ADSCrossRefGoogle Scholar
  16. [16]
    C. Lee et al., ACS Nano 12, 9982 (2018).CrossRefGoogle Scholar
  17. [17]
    C. Lee et al., Sci. Rep. 7, 40810 (2017).ADSCrossRefGoogle Scholar
  18. [18]
    M. Sakai, T. Ohmori and M. Fujii, Handai Nanophotonics (Elsevier, Oxford, 2007), p. 189.Google Scholar
  19. [19]
    C. Bindhu et al., J. Nonlinear Opt. Phys. Mater. 7, 531 (1998).ADSCrossRefGoogle Scholar
  20. [20]
    R. Vogel, P. Meredith, M. Harvey and H. Rubinsztein-Dunlop, Spectrochim. Acta A: Mol. Biomol. Spectrosc. 60, 245 (2004).ADSCrossRefGoogle Scholar
  21. [21]
    G. Leone et al., J. Mater. Chem. C 1, 1450 (2013).CrossRefGoogle Scholar
  22. [22]
    M. Ćwik et al., Materials 12, 721 (2019).ADSCrossRefGoogle Scholar
  23. [23]
    V. Martínez, F. L. Arbeloa, J. B. Prieto and I. L. Arbeloa, J. Phys. Chem. B 109, 7443 (2005).CrossRefGoogle Scholar

Copyright information

© The Korean Physical Society 2019

Authors and Affiliations

  • Byeong Geun Jeong
    • 1
  • Dae Young Park
    • 1
  • Kihyuk Yang
    • 1
  • Sung-Jin An
    • 1
  • Chulho Park
    • 1
  • Chanwoo Lee
    • 1
  • Hyang Mi Yu
    • 1
  • Mun Seok Jeong
    • 1
    Email author
  • Seung Mi Lee
    • 2
  1. 1.Department of Energy ScienceSungkyunkwan UniversitySuwonKorea
  2. 2.Korea Research Institute of Standards and Science (KRISS)DaejeonKorea

Personalised recommendations