Advertisement

Journal of the Korean Physical Society

, Volume 75, Issue 10, pp 806–810 | Cite as

Numerical Simulation of the Effects of Electric and Magnetic Fields on the Optical Absorption in a Parabolic Quantum Well

  • Shaffa AlmansourEmail author
Article
  • 4 Downloads

Abstract

In this research, effects of electric and magnetic fields on the electronic transitions and the optical absorption coefficients (OACs) of a AlGaAs/GaAs parabolic quantum well (PQW) have been investigated numerically by solving the one-dimensional Schrödinger equation. The confining potential, the energy levels and their corresponding wavefunctions are determined. Our findings indicate that when we increase the intensity of the magnetic field, the magnitudes of the OACs increase, but a blue shift in their corresponding positions is obtained. In addition, our results show that contrarily to the magnetic field, when we increase the intensity of the applied electric field, the OACs initially shift towards lower energies (red shift) and then towards higher energies (blue shift). The obtained results can help experimenters to design and fabricate some optoelectronic devices based on intersubband transitions using parabolic quantum wells.

Keywords

Optical absorption coefficient Schrödinger equation Parabolic quantum well 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    N. Kristaedter et al., Appl. Phys. Lett. 69, 1226 (1996).ADSCrossRefGoogle Scholar
  2. [2]
    K. Imamura et al., Jpn. J. Appl. Phys. 34, L1445 (1995).CrossRefGoogle Scholar
  3. [3]
    R. F. Kazarinov and R. A. Suris, Sov. Phys. Semicond. 5, 707 (1971).Google Scholar
  4. [4]
    D. A. B. Miller, Int. J. High. Speed. Electron. 1, 19 (1991).CrossRefGoogle Scholar
  5. [5]
    X. Jiang, S. S. Li and M. Z. Tidrow, Physica E 5, 27 (1999).ADSCrossRefGoogle Scholar
  6. [6]
    S. Y. Yuen, Appl. Phys. Lett. 43, 813 (1983).ADSCrossRefGoogle Scholar
  7. [7]
    H. Dakhlaoui, Optik 124, 3726 (2013).ADSCrossRefGoogle Scholar
  8. [8]
    H. Dakhlaoui, J. Appl. Phys. 117, 135705 (2015).ADSCrossRefGoogle Scholar
  9. [9]
    H. Dakhlaoui, S. Almansour and E. Algrafy, Superlattices. Microstruc. 77, 196 (2015).ADSCrossRefGoogle Scholar
  10. [10]
    D. Ahn and S. L. Chuang, J. Appl. Phys. 62, 3052 (1987).ADSCrossRefGoogle Scholar
  11. [11]
    H. Dakhlaoui, Superlattices. Microstruc. 97, 439 (2016).ADSCrossRefGoogle Scholar
  12. [12]
    A. Mathur et al., Appl. Surf. Sci. 113, 90 (1997).ADSCrossRefGoogle Scholar
  13. [13]
    B. Chen et al., Solid. State. Commun. 149, 310 (2009).ADSCrossRefGoogle Scholar
  14. [14]
    P. F. Yuh and K. L. Wang, J. Appl. Phys. 65, 4377 (1989).ADSCrossRefGoogle Scholar
  15. [15]
    G. H. Wang, Q. Guo and K. X. Guo, Chin. J. Phys. 41, 296 (2003).Google Scholar
  16. [16]
    M. Bedoya and A. S. Camacho, Phys. Rev. B. 72, 155318 (2005).ADSCrossRefGoogle Scholar
  17. [17]
    I. Karabulut, H. Safak and M. Tomak, Solid. State. Commun. 135, 735 (2005).ADSCrossRefGoogle Scholar
  18. [18]
    I. Karabulut, U. Atav, H. Safak and M. Tomak, Eur. Phys. J. B 55, 283 (2007).ADSCrossRefGoogle Scholar
  19. [19]
    I. Karabulut and H. Safak, Physica B 368, 82 (2005).ADSCrossRefGoogle Scholar
  20. [20]
    L. Zhang and H. J. Xie, Phys. Rev. B 68, 235315 (2003).ADSCrossRefGoogle Scholar
  21. [21]
    A. Shaffa, D. Hassen and A. Emane, Chin. Phys. Lett. 33, 027301 (2016).CrossRefGoogle Scholar
  22. [22]
    N. Li, K. X. Guo and S. Shao, Superlattices. Microstruc. 50, 461 (2011).ADSCrossRefGoogle Scholar
  23. [23]
    A. Keshavarz and M. J. Karimi, Phys. Lett. A. 374, 2675 (2010).ADSCrossRefGoogle Scholar
  24. [24]
    M. J. Karimi and A. Keshavarz, Superlattices. Microstruc. 50, 572 (2011).ADSCrossRefGoogle Scholar
  25. [25]
    E. Kasapoglu, H. Sari and I. Sokmen, Chin. Phys. Lett. 21, 2500 (2004).ADSCrossRefGoogle Scholar
  26. [26]
    E. Ozturk and I. Sokmen, Superlattices. Microstruct. 48, 312 (2010).ADSCrossRefGoogle Scholar
  27. [27]
    F. Ungan et al., J. Lumin. 132, 1627 (2012).CrossRefGoogle Scholar
  28. [28]
    E. Ozturk and I. Sokmen, J. Lumin. 145, 387 (2014).CrossRefGoogle Scholar
  29. [29]
    H. Dakhlaoui, Optik 168, 416 (2018).ADSCrossRefGoogle Scholar
  30. [30]
    H. ben Bechir Dakhlaoui and N. Mouna, Chem. Phys. Lett. 693, 40 (2018).ADSCrossRefGoogle Scholar
  31. [31]
    H. Dakhlaoui and M. Nefzi, Optik 157, 1342 (2018).ADSCrossRefGoogle Scholar

Copyright information

© The Korean Physical Society 2019

Authors and Affiliations

  1. 1.Nanomaterials Technology unit, Basic and Applied Scientific Research Center (BASRC), College of science of DammamImam Abdulrahman Bin Faisal UniversityDammamSaudi Arabia
  2. 2.Department of Physics, College of Sciences for GirlsImam Abdulrahman Bin Faisal UniversityDammamSaudi Arabia

Personalised recommendations