Advertisement

Journal of the Korean Physical Society

, Volume 75, Issue 10, pp 775–784 | Cite as

A Simulation Study and Its Experimental Validation for the Detection of Neutrons with a Continuous Energy Spectrum by Using a MICROMEGAS Detector

  • Cheolmin Ham
  • Do Yoon Kim
  • Eun Jin In
  • Sang-In Bak
  • Jae Won Shin
  • Seyoung Oh
  • Vivek Raghunath Chavan
  • Kyung Yuk Chae
  • Yangkyu Kim
  • Jounghwa Lee
  • Minkyu Lee
  • Dalho Moon
  • Tae-Sun Park
  • Seung-Woo HongEmail author
Article
  • 18 Downloads

Abstract

A MICROMEGAS (MICRO Mesh GASeous) detector is developed to monitor neutrons with a continuous energy spectra generated by bombarding protons on a thick Be target at the MC-50 cyclotron of the Korea Institute of Radiological and Medical Sciences (KIRAMS). Two different neutron spectra are produced by protons of 20 and 40 MeV, and are detected by using the MICROMEGAS detector with a boron converter. Boron carbides (B4C) are deposited on the cathode of the detector and are used as a neutron-to-charged particle converter. α particles and 7Li nuclei produced by the 10B(n,α)7Li reaction are detected by using the MICROMEGAS detector. Monte Carlo simulations for the detector system are performed to compare the experimental data with the simulation results. For measuring the energies of the α particles and the 7Li nuclei, we vary the geometry of detector in both the simulations and the experiments to fully stop the α particles and the 7Li nuclei in the detector. The changes of the positions of the α and the 7Li peaks observed in the distribution of the deposited energy for different detector geometries agree more or less with those from the simulation results. The neutron conversion efficiency of the detector is studied.

Keywords

MICROMEGAS Neutron detector Boron converter Monte Carlo simulation PHITS MC-50 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work was supported by the National Research Foundation of Korea (2013M7A1A1075764, NRF-2015H1D3A1066285, NRF-2016R1D1A1B03935429 and NRF-2017R1A2B4012758). The authors express their sincere thanks to the staff of the MC-50 Cyclotron Laboratory (KIRAMS) for the excellent operation and their support during the experiment.

References

  1. [1]
    D. A. Shea and D. Morgan, CRS Report for Congress No. R41419, 2010.Google Scholar
  2. [2]
    S. Ait-Boubker et al., Nucl. Instr. Meth. Phys. Res. A 277, 461 (1989).ADSCrossRefGoogle Scholar
  3. [3]
    D. S. McGregor et al., Nucl. Instr. Meth. Phys. Res. A 500, 272 (2003).ADSCrossRefGoogle Scholar
  4. [4]
    D. S. McGregor, J. T. Lindsay, R. W. Olsen and A. V. Alevra, Nucl. Instr. Meth. Phys. Res. A 381, 498 (1996).ADSCrossRefGoogle Scholar
  5. [5]
    A. Mireshghi et al., IEEE Trans. Nucl. Sci. 41, 915 (1994).ADSCrossRefGoogle Scholar
  6. [6]
    S. A. Wender et al., Nucl. Instr. Meth. Phys. Res. A 336, 226 (1993).ADSCrossRefGoogle Scholar
  7. [7]
    J. C. Kim et al., J. Korean Phys. Soc. 66, 478 (2015).ADSCrossRefGoogle Scholar
  8. [8]
    Y.-O. Lee et al., New Phys.: Sae Mulli 66, 1578 (2016).Google Scholar
  9. [9]
    J. K. Ahn et al., Few-Body Syst. 54, 197 (2013).ADSCrossRefGoogle Scholar
  10. [10]
    S. Jeong, P. Papakonstantinou, H. Ishiyama and Y. Kim, J. Korean Phys. Soc. 73, 516 (2018).ADSCrossRefGoogle Scholar
  11. [11]
    Y. Giomataris, P. Rebourgeard, J. P. Robert and G. Charpak, Nucl. Instr. Meth. Phys. Res. A 376, 29 (1996).ADSCrossRefGoogle Scholar
  12. [12]
    Y. Giomataris, Nucl. Instr. Meth. Phys. Res. A 419, 239 (1998).ADSCrossRefGoogle Scholar
  13. [13]
    G. Charpak, Nucl. Instr. Meth. Phys. Res. A 412, 47 (1998).ADSCrossRefGoogle Scholar
  14. [14]
    I. Giomataris et al., Nucl. Instr. Meth. Phys. Res. A 560, 405 (2006).ADSCrossRefGoogle Scholar
  15. [15]
    B. Brickwedde, A. Ddder, M. Schott and E. Yildirim, Nucl. Instr. Meth. Phys. Res. A 864, 1 (2017).ADSCrossRefGoogle Scholar
  16. [16]
    D. Y. Kim et al., J. Korean Phys. Soc. 68, 1060 (2016).ADSCrossRefGoogle Scholar
  17. [17]
    Y. Wei et al., IEEE Trans. Nucl. Sci. 60, 3008 (2013).ADSCrossRefGoogle Scholar
  18. [18]
    T. Dafni et al., Nucl. Instr. Meth. Phys. Res. A 608, 259 (2009).ADSCrossRefGoogle Scholar
  19. [19]
    S. Andriamonje et al., Nucl. Instr. Meth. Phys. Res. A 481, 120 (2002).ADSCrossRefGoogle Scholar
  20. [20]
    J. Pancin et al., Nucl. Instr. Meth. Phys. Res. A 524, 102 (2004).ADSCrossRefGoogle Scholar
  21. [21]
    C. Borcea et al., Nucl. Instr. Meth. Phys. Res. A 513, 524 (2003).ADSCrossRefGoogle Scholar
  22. [22]
    A. C. Stephan, R. G. Cooper and L. F. Miller, IEEE Trans. Nucl. Sci. 521, 441 (2004).Google Scholar
  23. [23]
    C. L. Britton et al., IEEE Trans. Nucl. Sci. 51, 1016 (2004).ADSCrossRefGoogle Scholar
  24. [24]
    F. Jeanneau et al., IEEE Trans. Nucl. Sci. 53, 595 (2015).ADSCrossRefGoogle Scholar
  25. [25]
    T. Sato et al., J. Nucl. Sci. Technol. 50, 913 (2013).CrossRefGoogle Scholar
  26. [26]
    G. F. Knoll, Radiation Detection and Measurement (John Wiley & Sons, Inc., New York, 2010).Google Scholar
  27. [27]
    J. F. Ziegler, M. D. Ziegler and J. P. Biersack, Nucl. Instr. Meth. Phys. Res. B 268, 1818 (2010).ADSCrossRefGoogle Scholar
  28. [28]
    D. Kim et al., Appl. Radiat. Isot. 81, 156 (2013).CrossRefGoogle Scholar
  29. [29]
    J. W. Shin et al., J. Korean Phys. Soc. 59, 2022 (2011).ADSCrossRefGoogle Scholar
  30. [30]
    J. W. Shin et al., Nucl. Instr. Meth. Phys. Res. A 797, 304 (2015).ADSCrossRefGoogle Scholar
  31. [31]
    J. W. Shin and T-S. Park, Nucl. Instr. Meth. Phys. Res. B 342, 194 (2015).ADSCrossRefGoogle Scholar
  32. [32]
    J. W. Shin and T-S. Park, Nucl. Instr. Meth. Phys. Res. B 407, 265 (2017).ADSCrossRefGoogle Scholar
  33. [33]
    M. B. Chadwick et al., Nucl. Data Sheets 112, 2887 (2011).ADSCrossRefGoogle Scholar
  34. [34]
    Y. Iwamoto et al., Prog. Nucl. Sci. Technol. 50, 913 (2013).CrossRefGoogle Scholar
  35. [35]
    K. Shibata et al., J. Nucl. Sci. Technol. 48, 1 (2011).CrossRefGoogle Scholar
  36. [36]
    A. Taheri, M. A. Lehdarboni and R. Gholipour, J. Instrum. 11, P05020 (2016).CrossRefGoogle Scholar
  37. [37]
    A. Taheri, M. Askari and M. T. Sasanpour, Eur. Phys. J. Plus 132, 384 (2017).CrossRefGoogle Scholar
  38. [38]
    H. Sipila, Nucl. Instr. Meth. 133, 251 (1976).CrossRefGoogle Scholar
  39. [39]
    N. Tsoulfanidis, Measurement and Detection of Radiation (CRC press, Boca Raton, 2010).CrossRefGoogle Scholar
  40. [40]
    T. Alexopoulos et al., Nucl. Instr. Meth. Phys. Res. A 677, 52 (2012).ADSCrossRefGoogle Scholar

Copyright information

© The Korean Physical Society 2019

Authors and Affiliations

  • Cheolmin Ham
    • 1
  • Do Yoon Kim
    • 1
  • Eun Jin In
    • 1
  • Sang-In Bak
    • 2
  • Jae Won Shin
    • 3
  • Seyoung Oh
    • 4
  • Vivek Raghunath Chavan
    • 5
  • Kyung Yuk Chae
    • 5
  • Yangkyu Kim
    • 5
  • Jounghwa Lee
    • 5
  • Minkyu Lee
    • 5
  • Dalho Moon
    • 5
  • Tae-Sun Park
    • 5
  • Seung-Woo Hong
    • 5
    Email author
  1. 1.Department of Energy ScienceSungkyunkwan UniversitySuwonKorea
  2. 2.Korea Institute of Nuclear SafetyDaejeonKorea
  3. 3.Department of PhysicsSoongsil UniversitySeoulKorea
  4. 4.Radiopharmaceuticals Production CenterKorea Institute of Radiological and Medical SciencesSeoulKorea
  5. 5.Department of PhysicsSungkyunkwan UniversitySuwonKorea

Personalised recommendations