Advertisement

Journal of the Korean Physical Society

, Volume 75, Issue 9, pp 742–747 | Cite as

Double-Running Inflaton Mass for a Flat Potential and Assisted Hilltop Inflation

  • Wan-Il ParkEmail author
Article
  • 4 Downloads

Abstract

We propose a scenario to flatten the inflaton potential for a small-field slow-roll inflation from the origin. In the scenario, the inflaton mass-square goes through a renormalization group running that depends on not only inflaton field but also an assisting field. Thanks to the assisting field participating in the running, the initial condition for a slow-roll inflation can be set naturally, and the inflaton potential can be flattened by the vacuum expectation value of the field. Applying this idea, we propose a scenario of inflation, dubbed here as assisted hilltop inflation, which is free from the initial condition and the flatness problems of inflation.

Keywords

Inflation Supersymmetry Supergravity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

The author thanks Gabriela Barenboim and Jinsu Kim for fruitful discussions at the early stage of this work. This work is supported by research funds for newly appointed professors of Jeonbuk National University in 2017, and by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (No. 2017R1D1A1B 06035959).

References

  1. [1]
    A. H. Guth, Phys. Rev. D 23, 347 (1981).ADSCrossRefGoogle Scholar
  2. [2]
    K. Sato, Mon. Not. Roy. Astron. Soc. 195, 467 (1981).ADSCrossRefGoogle Scholar
  3. [3]
    A. A. Starobinsky, Phys. Lett. B 91, 99 (1980).ADSCrossRefGoogle Scholar
  4. [4]
    V. F. Mukhanov and G. V. Chibisov, JETP Lett. 33, 532 (1981).ADSGoogle Scholar
  5. [5]
    V. F. Mukhanov and G. V. Chibisov, Sov. Phys. JETP 56, 258 (1982).Google Scholar
  6. [6]
    E. J. Copeland et al., Phys. Rev. D 49, 6410 (1994).ADSCrossRefGoogle Scholar
  7. [7]
    E. D. Stewart, Phys. Rev. D 51, 6847 (1995).ADSCrossRefGoogle Scholar
  8. [8]
    M. Yamaguchi, Class. Quant. Grav. 28, 103001 (2011).ADSCrossRefGoogle Scholar
  9. [9]
    M. Kawasaki, M. Yamaguchi and T. Yanagida, Phys. Rev. Lett. 85, 3572 (2000).ADSCrossRefGoogle Scholar
  10. [10]
    K. Freese, J. A. Frieman and A. V. Olinto, Phys. Rev. Lett. 65, 3233 (1990).ADSCrossRefGoogle Scholar
  11. [11]
    E. Silverstein and A. Westphal, Phys. Rev. D 78, 106003 (2008).ADSCrossRefGoogle Scholar
  12. [12]
    L. McAllister, E. Silverstein and A. Westphal, Phys. Rev. D 82, 046003 (2010).ADSCrossRefGoogle Scholar
  13. [13]
    M. Berg, E. Pajer and S. Sjors, Phys. Rev. D 81, 103535 (2010).ADSCrossRefGoogle Scholar
  14. [14]
    J. McDonald, J. Cosmol. Astropart. P. 1409, 027 (2014).CrossRefGoogle Scholar
  15. [15]
    J. McDonald, arXiv:1407.7471 [hep-ph].Google Scholar
  16. [16]
    T. Li, Z. Li and D. V. Nanopoulos, arXiv:1409.3267 [hepth].Google Scholar
  17. [17]
    C. D. Carone, J. Erlich, A. Sensharma and Z. Wang, arXiv:1410.2593 [hep-ph].Google Scholar
  18. [18]
    G. Barenboim and W. I. Park, Phys. Lett. B 741, 252 (2015).ADSCrossRefGoogle Scholar
  19. [19]
    G. Barenboim and W. I. Park, Phys. Rev. D 91, 063511 (2015).ADSCrossRefGoogle Scholar
  20. [20]
    G. Barenboim and W. I. Park, arXiv:1504.02080 [astroph. CO].Google Scholar
  21. [21]
    J. E. Kim, H. P. Nilles and M. Peloso, J. Cosmol. Astropart. P. 0501, 005 (2005).ADSCrossRefGoogle Scholar
  22. [22]
    F. L. Bezrukov and M. Shaposhnikov, Phys. Lett. B 659, 703 (2008).ADSCrossRefGoogle Scholar
  23. [23]
    C. P. Burgess, H. M. Lee and M. Trott, J. High Energy Phys. 1007, 007 (2010).ADSCrossRefGoogle Scholar
  24. [24]
    G. F. Giudice and H. M. Lee, Phys. Lett. B 694, 294 (2011).ADSCrossRefGoogle Scholar
  25. [25]
    E. D. Stewart, Phys. Lett. B 391, 34 (1997).ADSMathSciNetCrossRefGoogle Scholar
  26. [26]
    E. D. Stewart, Phys. Rev. D 56, 2019 (1997).ADSCrossRefGoogle Scholar
  27. [27]
    S. Clesse, B. Garbrecht and Y. Zhu, Phys. Rev. D 89, 063519 (2014).ADSCrossRefGoogle Scholar
  28. [28]
    K. Kohri, C. M. Lin and D. H. Lyth, J. Cosmol. Astropart. P. 0712, 004 (2007).CrossRefGoogle Scholar
  29. [29]
    C. M. Lin and K. Cheung, J. Cosmol. Astropart. P. 0903, 012 (2009).ADSCrossRefGoogle Scholar
  30. [30]
    T. Gherghetta, C. F. Kolda and S. P. Martin, Nucl. Phys. B 468, 37 (1996).ADSCrossRefGoogle Scholar
  31. [31]
    L. Boubekeur and D. H. Lyth, J. Cosmol. Astropart. P. 0507, 010 (2005).ADSCrossRefGoogle Scholar
  32. [32]
    S. R. Coleman and E. J. Weinberg, Phys. Rev. D 7, 1888 (1973).ADSCrossRefGoogle Scholar
  33. [33]
    S. P. Martin, Adv. Ser. Direct. High Energy Phys. 21, 1 (2010).CrossRefGoogle Scholar
  34. [34]
    J. Martin, C. Ringeval and V. Vennin, Phys. Dark Univ. 5–6, 75 (2014).CrossRefGoogle Scholar
  35. [35]
    A. Vilenkin, Phys. Rev. D 27, 2848 (1983).ADSMathSciNetCrossRefGoogle Scholar
  36. [36]
    A. H. Guth and S. Y. Pi, Phys. Rev. D 32, 1899 (1985).ADSMathSciNetCrossRefGoogle Scholar
  37. [37]
    A. D. Linde, Mod. Phys. Lett. A 1, 81 (1986).ADSCrossRefGoogle Scholar
  38. [38]
    A. D. Linde, Phys. Lett. B 175, 395 (1986).ADSCrossRefGoogle Scholar
  39. [39]
    A. A. Starobinsky, Lect. Notes Phys. 246, 107 (1986).ADSMathSciNetCrossRefGoogle Scholar
  40. [40]
    P. A. R. Ade et al. [Planck Collaboration], Astron. Astrophys. 594, A20 (2016).CrossRefGoogle Scholar
  41. [41]
    D. H. Lyth and A. Riotto, Phys. Rept. 314, 1 (1999).ADSCrossRefGoogle Scholar
  42. [42]
    E. Cremmer et al., Phys. Lett. 137B, 62 (1984).ADSCrossRefGoogle Scholar
  43. [43]
    A. H. Chamseddine and H. K. Dreiner, Nucl. Phys. B 458, 65 (1996).ADSCrossRefGoogle Scholar

Copyright information

© The Korean Physical Society 2019

Authors and Affiliations

  1. 1.Division of Science Education and Institute of Fusion ScienceJeonbuk National UniversityJeonjuKorea

Personalised recommendations