Advertisement

Journal of the Korean Physical Society

, Volume 75, Issue 9, pp 708–715 | Cite as

Investigation on the Three-Dimensional Nanostructure and the Optical Properties of Hydroxyapatite/Magnetite Nanocomposites Prepared from Natural Resources

  • Yuanita Amalia Hariyanto
  • Ahmad TaufiqEmail author
  • Sunaryono
  • Siriwat Soontaranon
Article
  • 5 Downloads

Abstract

Hydroxyapatite, which has been widely used in the medical field in the last couple of years, is a superior biomaterial due to its biocompatibility and nontoxicity. Hydroxyapatite requires highly magnetic materials to perform maximally in specific medical fields. In this study, hydroxyapatite/ magnetite composites mainly composed of limestone and natural iron sand were synthesized through a coprecipitation method, and composites having different hydroxyapatite-to-magnetite mass ratios were compared. The crystal structure, particle size, fractal dimension, morphology, functional group, and energy gap were characterized using X-ray diffraction (XRD), synchrotron X-ray scattering (SAXS), scanning electron microscopy (SEM), Fourier-transform infrared (FTIR) spectroscopy, and ultraviolent-visible (UV-Vis) spectroscopy. The research results showed that the hydroxyapatite and magnetite phases had a hexagonal structure and cubic structure, respectively. In general, from the FTIR data analysis, the hydroxyapatite and magnetite particles were identified from the functional groups of phosphate, iron-oxygen, carbonate, and hydroxyl. Moreover, depending on particle size, the samples consisting of 3.7-nm primary particles formed a cluster with a massive three-dimensional structure. Meanwhile, the energy gap showed various values ranging between 3.25 and 3.86 eV.

Keywords

Hydroxyapatite Magnetite Limestone Iron sand Nanostructure 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work was supported by a “PDUPT” research grant from Ministry of Research, Technology and Higher Education of the Republic of Indonesia for AT.

References

  1. [1]
    Y. Xu et al., Adv. Powder Technol. 29, 4 (2018).Google Scholar
  2. [2]
    T. S. Phan et al., Appl. Catal. B Environ. 224, 5 (2018).CrossRefGoogle Scholar
  3. [3]
    A. Bhowmick et al., Int. J. Biol. Macromol. 106, 1 (2018).CrossRefGoogle Scholar
  4. [4]
    S. Saber-Samandari, H. Yekta, S. Ahmadi and K. Alamara, Int. J. Biol. Macromol. 106, 1 (2018).CrossRefGoogle Scholar
  5. [5]
    J. K. Odusote et al., J. Appl. Biomater. Funct. Mater. 17, 2 (2019).Google Scholar
  6. [6]
    Z. Noor et al., Universa Med. 30, 1 (2016).Google Scholar
  7. [7]
    W. Sun et al., ACS Appl. Mater. Interfaces. 10, 9 (2018).ADSGoogle Scholar
  8. [8]
    Y. Xie et al., ACS Appl. Mater. Interfaces. 8, 16 (2016).CrossRefGoogle Scholar
  9. [9]
    A. Tesch et al., Mater. Sci. Eng. C. 81, 12 (2017).CrossRefGoogle Scholar
  10. [10]
    V. D. Doan, V. T. Le, T. T. N. Le and H. T. Nguyen, Adv. Mater. Sci. Eng. 2019, 4 (2019).CrossRefGoogle Scholar
  11. [11]
    H. Yang et al., J. Colloid Interface Sci. 417, 3 (2014).ADSCrossRefGoogle Scholar
  12. [12]
    M. J. Robles-Águila, J. A. Reyes-Avendaño and M. E. Mendoza, Ceram. Int. 43, 15 (2017).CrossRefGoogle Scholar
  13. [13]
    C. Sarkar et al., Carbohydr. Polym. 181, 2 (2018).CrossRefGoogle Scholar
  14. [14]
    M. Amirnejad, A. Afshar and S. Salehi, J. Mater. Eng. Perform. 27, 5 (2018).CrossRefGoogle Scholar
  15. [15]
    E. Damien and P. A. Revell, J. Appl. Biomater. Biomech. JABB. 2, 2 (2004).Google Scholar
  16. [16]
    Y. Luo et al., J. Controlled Release. 147, 2 (2010).CrossRefGoogle Scholar
  17. [17]
    G. D. Venkatasubbu et al., Powder Technol. 235, 2 (2013).CrossRefGoogle Scholar
  18. [18]
    B. Kundu et al., Ceram. Int. 39, 8 (2013).Google Scholar
  19. [19]
    Z. Yang, X. Gong and C. Zhang, Chem. Eng. J. 165, 1 (2010).CrossRefGoogle Scholar
  20. [20]
    M. Mansouri et al., J. Magn. Magn. Mater. 421, 1 (2017).CrossRefGoogle Scholar
  21. [21]
    L. Gu, X. He and Z. Wu, Mater. Res. Bull. 59, 11 (2014).CrossRefGoogle Scholar
  22. [22]
    S. Mortazavi-Derazkola et al., J. Clean. Prod. 168, 12 (2017).CrossRefGoogle Scholar
  23. [23]
    L. Dong, Z. Zhu, Y. Qiu and J. Zhao, Chem. Eng. J. 165, 3 (2010).CrossRefGoogle Scholar
  24. [24]
    A. Inukai et al., J. Magn. Magn. Mater. 323, 7 (2011).CrossRefGoogle Scholar
  25. [25]
    J. Trinkunaite-Felsen et al., Adv. Powder Technol. 26, 5 (2015).CrossRefGoogle Scholar
  26. [26]
    N. V. Abramov et al., J. Nanostructure Chem. 6, 3 (2016).CrossRefGoogle Scholar
  27. [27]
    E. Andronescu et al., J. Mater. Sci. Mater. Med. 21, 7 (2010).CrossRefGoogle Scholar
  28. [28]
    A. Taufiq et al., Nano 12, 9 (2017).CrossRefGoogle Scholar
  29. [29]
    E. Kosobrodova et al., J. Mater. Sci. Mater. Med. 29, 1 (2017).Google Scholar
  30. [30]
    R. Karunamoorthi et al., J. Am. Ceram. Soc. 97, 4 (2014).CrossRefGoogle Scholar
  31. [31]
    M. Nisar et al., Polymer 118, 6 (2017).CrossRefGoogle Scholar
  32. [32]
    A. Taufiq et al., Mater. Sci. Forum. 827, 1 (2015).CrossRefGoogle Scholar
  33. [33]
    I. Bressler, J. Kohlbrecher and A. F. Thünemann., J. Appl Cryst. 48, 5 (2015).Google Scholar
  34. [34]
    R. Gelli et al., J. Colloid Interface Sci. 511, 2 (2018).CrossRefGoogle Scholar
  35. [35]
    D. W. Schaefer, MRS Bull. 13, 2 (1988).CrossRefGoogle Scholar
  36. [36]
    A. Taufiq et al., J. Supercond. Nov. Magn. 28, 9 (2015).CrossRefGoogle Scholar
  37. [37]
    J. Kohlbrecher, SASfit: A Program for Fitting Simple Structural Models to Small Angle Scattering Data (Laboratory for Neutron Scattering: Paul Scherrer Institute, 2017).Google Scholar
  38. [38]
    H. Guo, IEEE Signal Process. Mag. 28, 5 (2011).ADSCrossRefGoogle Scholar
  39. [39]
    I. Rehman and W. Bonfield, J. Mater. Sci. Mater. Med. 8, 1 (1997).CrossRefGoogle Scholar
  40. [40]
    Y. A. Hariyanto et al., IOP Conf. Ser. Mater. Sci. Eng. 515, 4 (2019).Google Scholar
  41. [41]
    S. J. Iyengar et al., RSC Adv. 6, 17 (2016).Google Scholar
  42. [42]
    S. Valizadeh, M. H. Rasoulifard and M. S. S. Dorraji, Appl. Surf. Sci. 319, 11 (2014).CrossRefGoogle Scholar
  43. [43]
    I. Rehman and W. Bonfield, J. Mater. Sci. Mater. Med. 8, 1 (1997).CrossRefGoogle Scholar
  44. [44]
    M. A. Zayed et al., J. Mol. Liq. 222, 10 (2016).CrossRefGoogle Scholar
  45. [45]
    M. Munasir and A. Terraningtyas, J. Phys. Conf. Ser. 1171, 2 (2019).Google Scholar
  46. [46]
    D. Aronov, A. Karlov and G. Rosenman, J. Eur. Ceram. Soc. 27, 13 (2007).CrossRefGoogle Scholar
  47. [47]
    F. El-Diasty et al., Curr. Opin. Solid State Mater. Sci. 13, 1 (2009).CrossRefGoogle Scholar
  48. [48]
    H. Lin et al., Appl. Catal. B Environ. 68, 1 (2006).CrossRefGoogle Scholar

Copyright information

© The Korean Physical Society 2019

Authors and Affiliations

  • Yuanita Amalia Hariyanto
    • 1
  • Ahmad Taufiq
    • 2
    Email author
  • Sunaryono
    • 2
  • Siriwat Soontaranon
    • 2
  1. 1.Department of PhysicsUniversitas Negeri MalangMalangIndonesia
  2. 2.Synchrotron Light Research InstituteMuang District, Nakhon RatchasimaThailand

Personalised recommendations