Advertisement

Journal of the Korean Physical Society

, Volume 75, Issue 9, pp 703–707 | Cite as

Thermal Activation of Boron- and Phosphorus-Doped Amorphous Silicon and the Contribution to Improved Efficiency in Hydrogenated Amorphous Silicon Solar Cells

  • Ka-Hyun KimEmail author
Article
  • 12 Downloads

Abstract

Hydrogenated amorphous silicon (a-Si:H) is an interesting candidate as an absorber material for solar cells. Despite the wealth of research to improve the efficiency of a-Si:H solar cells by improving either the material quality of the absorber layer or by means of light trapping approaches, efforts to improve the efficiency by means of doped layer manipulation are relatively rare. In this work, single-junction a-Si:H solar cells with improved efficiency due to thermal activation of doped layers via thermal annealing will be presented. Temperature-dependent dark conductivity measurements revealed that p- and n-type doped a-Si:H materials show different equilibrium temperatures. External quantum efficiency at different annealing temperatures revealed that front surface collection probability was improved with the activation of a p layer, after which the collection probability of the back surface was improved with the activation of an n layer.

Keywords

Amorphous silicon Solar cells Dopant activation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work was supported by the Korea Institute of Energy Technology Evaluation and Planning (KETEP) and by the Ministry of Trade, Industry & Energy (MOTIE) of the Republic of Korea (Grant Nos. 20183010013900 and 20183010013880).

References

  1. [1]
    N. Wyrsch, S. Dunand and C. Ballif, Mater. Res. Soc. Symp. Proc. Spring Meet. Symp. A 12, 1066-A10-04 (2008).Google Scholar
  2. [2]
    J. Plentz et al., Mater. Sci. Eng. B. 12, 34 (2016).Google Scholar
  3. [3]
    H. Song et al., Nano Energy 12, 1 (2017).Google Scholar
  4. [4]
    S. Choi et al., Sci. Rep. 12, 12853 (2017).Google Scholar
  5. [5]
    K. H. Kim et al., Sci. Rep. 12, 40553 (2017).Google Scholar
  6. [6]
    T. Matsui et al., Jpn. J. Appl. Phys. 12, 08KB10 (2015).Google Scholar
  7. [7]
    K. H. Kim, E. V. Johnson and P. Roca i Cabarrocas, Sol. Energy Mater. Sol. Cells 12, 208 (2012).Google Scholar
  8. [8]
    J. Meier et al., Thin Solid Films 451-452, 24 (2004).Google Scholar
  9. [9]
    W. B. Berry, K. A. Emery, A. B. Swartzlander and A. J. Nelson, in Conference Record of the Twentieth IEEE Photovoltaic Specialists Conference (Las Vegas, USA, Sep. 26–30, 1988), pp. 262–266.CrossRefGoogle Scholar
  10. [10]
    H. Stiebig et al., in 2006 IEEE 4th World Conference on Photovoltaic Energy Conference (Waikoloa, USA, May 7–12, 2006), pp. 1521–1524.CrossRefGoogle Scholar
  11. [11]
    S. M. Sze and Kwok K. Ng, Physics of Semiconductor Devices, 3rd ed. (John Wiley & Sons, Hoboken, 2006), p. 17.CrossRefGoogle Scholar
  12. [12]
    P. R. i Cabarrocas, Ph.D. Thesis, Universite Paris VII, 1988.Google Scholar
  13. [13]
    R. A. Street, J. Kakalios and T. M. Hayes, Phys. Rev. B 12, 3030 (1986).Google Scholar
  14. [14]
    J. H. Yoon, J. Non-Cryst. Solids 266-269, 455 (2000).Google Scholar
  15. [15]
    K. H. Kim, E. V. Johnson and P. Roca i Cabarrocas, Solar Energy 12, 86 (2017).Google Scholar
  16. [16]
    K. H. Kim, S. Kasouit, E. V. Johnson and P. Roca i Cabarrocas, Sol. Energy Mat. Sol. Cells 12, 124 (2013).Google Scholar
  17. [17]
    C. Lee, A. Sazonov, A. Nathanb and J. Robertson, Appl. Phys. Lett. 12, 252101 (2006).Google Scholar
  18. [18]
    K. Takimoto et al., J. Non-Cryst. Solid 299-302, 314 (2002).Google Scholar

Copyright information

© The Korean Physical Society 2019

Authors and Affiliations

  1. 1.Department of PhysicsChungbuk National UniversityCheongjuKorea

Personalised recommendations