Advertisement

Journal of the Korean Physical Society

, Volume 75, Issue 8, pp 636–643 | Cite as

Phase Transitions in the Evolution Model with Phenotypic Variation via Learning

  • Yung-Gyung Kang
  • Jeong-Man ParkEmail author
Article
  • 6 Downloads

Abstract

The Baldwin effect describes how phenotypic variations such as the learned behaviors among clones (individuals with identical genes, i.e., isogenic individuals) can generally affect the course of evolution. We investigate the effects of phenotypic variation via learning on the evolutionary dynamics of a population. In a population, we assume the individuals to be haploid with two genotypes: one genotype shows phenotypic variation via learning and the other does not. We use an individual-based Moran model in which the evolutionary dynamics is formulated in terms of a master equation and is approximated as the Fokker-Planck equation (FPE) and the coupled nonlinear stochastic differential equations (SDEs) with multiplicative noise. In the infinite population limit, we analyze the deterministic part of the SDEs to obtain the fixed points and determine the stability of each fixed point. We find discrete phase transitions in the population distribution when the set of probabilities of reproducing the fitter and the unfit isogenic individuals is equal to the set of critical values determined by the stability of the fixed points. We also carry out numerical simulations in the form of the Gillespie algorithm and find that the results of the simulations are consistent with the analytic predictions.

Keywords

Evolutionary dynamics Phenotypic variation Learned behavior 

PACS numbers

87.23.Kg 64.10.+h 05.10.Gg 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

YGK was supported by a Hanshin University research grant. JMP was supported by the Catholic University of Korea research fund 2019 and by the Basic Science Research Program through the National Research Foundation of Korea (Grant No. NRF-2018R1A2B6007007).

References

  1. [1]
    E. Korobkova et al., Nature 428, 574 (2004).ADSCrossRefGoogle Scholar
  2. [2]
    J. Paulsson, Nature 427, 415 (2004).ADSCrossRefGoogle Scholar
  3. [3]
    M. Acar, J. T. Mettetal and A. V. Oudenaarden, Nat. Genet. 40, 471 (2008).CrossRefGoogle Scholar
  4. [4]
    N. Q. Balaban et al., Science 305, 1622 (2004).ADSCrossRefGoogle Scholar
  5. [5]
    K. Kaneko, PLoS ONE 2, e434 (2007).ADSCrossRefGoogle Scholar
  6. [6]
    A. Wagner, Nature 24, 355 (2000).Google Scholar
  7. [7]
    K. Sato, Y. Ito, T. Yomo and K. Kaneko, Proc. Natl. Acad. Sci. U.S.A. 100, 14086 (2003).ADSCrossRefGoogle Scholar
  8. [8]
    M. B. Elowitz, A. J. Levine, E. D. Siggia and P. S. Swain, Science 297, 1183 (2002).ADSCrossRefGoogle Scholar
  9. [9]
    J. M. Pedraza and A. V. Oudenaarden, Science 307, 1965 (2005).ADSCrossRefGoogle Scholar
  10. [10]
    N. Rosenfeld et al., Science 307, 1962 (2005).ADSCrossRefGoogle Scholar
  11. [11]
    N. Saito, S. Ishihara and K. Kaneko, Phys. Rev. E 87, 052701 (2013).ADSCrossRefGoogle Scholar
  12. [12]
    Y. Ito, H. Toyota, K. Kaneko and T. Yomo, Molecular Syst. Biol. 5, 264 (2009).CrossRefGoogle Scholar
  13. [13]
    A. P. Feinberg and R. A. Irizzary, Proc. Natl. Acad. Sci. U.S.A. 107, 1757 (2010).ADSCrossRefGoogle Scholar
  14. [14]
    M. F. Wernet et al., Nature 440, 174 (2006).ADSCrossRefGoogle Scholar
  15. [15]
    Y-G. Kang and J-M. Park, J. Korean Phys. Soc. 73, 1774 (2018).ADSCrossRefGoogle Scholar
  16. [16]
    M. J. Baldwin, Am. Nat. 30, 441 (1896).CrossRefGoogle Scholar
  17. [17]
    G. G. Simpson, Evolution 7, 110 (1953).CrossRefGoogle Scholar
  18. [18]
    G. E. Hinton and S. J. Nowlan, Complex Syst. 1, 495 (1987).Google Scholar
  19. [19]
    I. Paenke, B. Sendhoff and T. J. Kawecki, Am. Nat. 170, E47 (2007).CrossRefGoogle Scholar
  20. [20]
    E. Borenstein, I. Meilijson and E. Ruppin, J. Evol. Biol. 19, 1555 (2006).CrossRefGoogle Scholar
  21. [21]
    C. W. Gardiner, Handbook of Stochastic Methods, 4th ed. (Springer, Berlin, 2009).zbMATHGoogle Scholar
  22. [22]
    Y-G. Kang and J-M. Park, J. Korean Phys. Soc. 71, 528 (2017).ADSCrossRefGoogle Scholar
  23. [23]
    G. W. A. Constable and A. J. McKane, Phys. Rev. E 89, 032141 (2014).ADSCrossRefGoogle Scholar
  24. [24]
    G. W. A. Constable, T. Rogers, A. J. McKane and C. E. Tarnita, Proc. Natl. Acad. Sci. U.S.A. 113, E4745 (2016).CrossRefGoogle Scholar

Copyright information

© The Korean Physical Society 2019

Authors and Affiliations

  1. 1.School of Computer EngineeringHanshin UniversityOsanKorea
  2. 2.Department of PhysicsThe Catholic University of KoreaBucheonKorea

Personalised recommendations