Journal of the Korean Physical Society

, Volume 75, Issue 8, pp 577–585 | Cite as

Temperature-Dependent Photoluminescence Studies of Ge1−ySny (y = 4.3%–9.0%) Grown on Ge-Buffered Si: Evidence for a Direct Bandgap Cross-Over Point

  • Mee-Yi RyuEmail author
  • Thomas R. Harris
  • Buguo Wang
  • Yung Kee Yeo
  • Michael R. Hogsed
  • Sang Jo Lee
  • Jong Su Kim
  • John Kouvetakis


The temperature (T)-dependent photoluminescence (PL) from Ge1−ySny (y = 4.3%–9.0%) alloys grown on Ge-buffered Si substrates was studied as a function of the Sn content. The PL from Ge1−ySny alloys with high Sn contents (≥7.0%) exhibited the typical characteristics of direct bandgap semiconductors, such as an increase in the PL intensity with decreasing T and a single PL peak corresponding to a transition from the direct bandgap (Γ-valley) to the valence band at all temperatures from 10 to 300 K. For the Ge1−ySny alloys with low Sn contents (≤6.2%), the PL emission peaks corresponding to both the direct bandgap (ED) and the indirect bandgap (EID) PL appeared at most temperatures and as T was increased, the integrated PL intensities of ED initially increased, then decreased, and finally increased again. The unstrained ED and EID energies estimated from the PL spectra at 75 and 125 K were plotted as functions of the Sn concentration, and the cross-over point for unstrained Ge1−ySny was found to be about 6.4%–6.7% Sn by using linear fits to the data in the range of Sn contents from 0% to 9.0%. Based on the results at 75 and 125 K, the cross-over Sn concentration of unstrained Ge1−ySny should be about 6.4%–6.7% Sn content at room temperature. The ED energies of the Ge0.925Sn0.075 alloys were estimated from the T-dependent photoreflectance spectra, and the ED values was consistent with those obtained from PL spectra.


Germanium tin Alloys Photoluminescence Ultra-high vacuum chemical vapor deposition Photoreflectance 

PACS numbers

78.55.-m 81.15.Gh 61.66.Dk 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors would like to express their sincere appreciation to Dr. Gernot S. Pomrenke of the Air Force Office of Scientific Research for his support of this work. This research (MYR) was also supported in part by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (NRF-2017 R1A2B4003744). This research (B.W.) was supported in part by an appointment to the Faculty Research Participation Program at AFIT, administered by the Oak Ridge Institute for Science and Education through an interagency agreement between the U.S. Department of Energy and AFIT. The views expressed in this article are those of the authors and do not reflect the official policy or position of the United States Air Force, Department of Defense, or the United States Government.


  1. [1]
    M. Oehme et al., Appl. Phys. Lett. 101, 141110 (2012).ADSCrossRefGoogle Scholar
  2. [2]
    C. L. Senaratne et al., J. Appl. Phys. 120, 025701 (2016).ADSCrossRefGoogle Scholar
  3. [3]
    V. Chakraborty, B. Mukhapadhyay and P. K. Basu, Phys. E 50, 67 (2013).CrossRefGoogle Scholar
  4. [4]
    W. Du et al., Appl. Phys. Lett. 104, 241110 (2014).ADSCrossRefGoogle Scholar
  5. [5]
    J. Mattews et al., ECS Trans. 75, 163 (2016).CrossRefGoogle Scholar
  6. [6]
    S. Wirths et al., Nat. Photon. 9, 77 (2015).CrossRefGoogle Scholar
  7. [7]
    D. Stange et al., ACS Photon. 3, 1279 (2016).CrossRefGoogle Scholar
  8. [8]
    D. S. Sukhdeo et al., Photonics Res. 2, A8 (2014).CrossRefGoogle Scholar
  9. [9]
    S. Gupta, B. Magyari-Köpe, Y. Nishi and K. C. Saraswat, J. Appl. Phys. 113, 073707 (2013).ADSCrossRefGoogle Scholar
  10. [10]
    J. D. Gallagher. C. L. Senaratne, J. Kouvetakis and J. Menéndez, Appl. Phys. Lett. 105, 142102 (2014).ADSCrossRefGoogle Scholar
  11. [11]
    L. Jiang et al., Semicond. Sci. Technol. 29, 115028 (2014).ADSCrossRefGoogle Scholar
  12. [12]
    T. R. Harris et al., J. Appl. Phys. 120, 085706 (2016).ADSCrossRefGoogle Scholar
  13. [13]
    M-Y. Ryu et al., Appl. Phys. Lett. 102, 171908 (2013).ADSCrossRefGoogle Scholar
  14. [14]
    T. R. Harris et al., J. Appl. Phys. 116, 103502 (2014).ADSCrossRefGoogle Scholar
  15. [15]
    C. L. Senaratne et al., J. Appl. Phys. 116, 133509 (2014).ADSCrossRefGoogle Scholar
  16. [16]
    G. Grzybowski et al., Appl. Phys. Lett. 99, 171910 (2011).ADSCrossRefGoogle Scholar
  17. [17]
    E. H. Steenbergen, J. A. Massengale, G. Ariyawansa and Y-H. Zhang, J. Lumin. 178, 451 (2016).CrossRefGoogle Scholar
  18. [18]
    Y. P. Varshni, Physica 34, 149 (1967).ADSCrossRefGoogle Scholar
  19. [19]
    M. E. Levinshten, S. L. Rumyantsev and M. Shur, Handbook Series on Semiconductor Parameters, Volume 1: Si, Ge, C (Diamond), GaAs, GaP, GaSb, InAs, InP, InSb (World Scientific, London, 1996).CrossRefGoogle Scholar
  20. [20]
    C. G. van de Walle, Phys. Rev. B 39, 1871 (1989).ADSCrossRefGoogle Scholar
  21. [21]
    S. C. Jain and D. J. Roulston, Solid-State Electron. 34, 453 (1991).ADSCrossRefGoogle Scholar
  22. [22]
    M. P. Polak, P. Scharoch and R. Kudrawiec, J. Phys. D: Appl. Phys. 50, 195103 (2017).ADSCrossRefGoogle Scholar
  23. [23]
    S. Prucnal et al., Phys. Rev. Appl. 10, 064055 (2018).ADSCrossRefGoogle Scholar
  24. [24]
    J. S. Kim et al., J. Korean Phys. Soc. 39, S246 (2001).Google Scholar
  25. [25]
    H-J. Jo et al., Thin Solid Films 591, 295 (2015).ADSCrossRefGoogle Scholar
  26. [26]
    D. E. Aspnes, Phys. Rev. B 10, 4228 (1974).ADSCrossRefGoogle Scholar
  27. [27]
    J. P. Estrera, W. M. Duncan and R. Glosser, Phys. Rev. B 49, 7281 (1994).ADSCrossRefGoogle Scholar
  28. [28]
    S. J. Lee et al., Appl. Sci. Converg. Technol. 28, 46 (2019).CrossRefGoogle Scholar

Copyright information

© The Korean Physical Society 2019

Authors and Affiliations

  • Mee-Yi Ryu
    • 1
    Email author
  • Thomas R. Harris
    • 2
  • Buguo Wang
    • 2
  • Yung Kee Yeo
    • 2
  • Michael R. Hogsed
    • 2
  • Sang Jo Lee
    • 3
  • Jong Su Kim
    • 3
  • John Kouvetakis
    • 4
  1. 1.Department of PhysicsKangwon National UniversityChuncheonKorea
  2. 2.Department of Engineering PhysicsAir Force Institute of TechnologyDaytonUSA
  3. 3.Department of PhysicsYeungnam UniversityGyeongsanKorea
  4. 4.School of Molecular ScienceArizona State UniversityTempeUSA

Personalised recommendations