Advertisement

Journal of the Korean Physical Society

, Volume 75, Issue 7, pp 541–546 | Cite as

Performance Test of a Laboratory-Based Ambient Pressure X-ray Photoelectron Spectroscopy System at the Gwangju Institute of Science and Technology

  • Hojoon Lim
  • Youngseok Yu
  • Dongwoo Kim
  • Yoobin Esther Koh
  • Bongjin Simon MunEmail author
  • Vincent Lehane
Article
  • 41 Downloads

Abstract

The performance test of a laboratory based ambient pressure X-ray photoelectron spectroscopy (AP-XPS) system at the Gwangju Institute of Science and Technology (GIST) was carried out. The system, consisted of a Scienta R4000 HiPP-3 electron analyzer and a monochromatized Al Kα X-ray source, is designed to operate a gas pressure of up to 25 Torr. An Al polyimide X-ray window is used to isolate the X-ray source from the back-filled-type ambient pressure measurement chamber. Two modes of XPS operations were tested, a one-dimensional chemical imaging mode and a transmission mode. In the transmission mode, the lens voltage of analyzer was optimized for maximum detection of photo-excited electrons under elevated pressure condition, i.e., a typical standard lens operation mode. On the other hand, in the imaging mode, spatial information on the outgoing electrons is conserved to generate a one-dimensional chemical image of surface being measured. The test of the imaging mode on a Au/Si reference sample showed a spatial resolution of ∼10 µm under an Ar gas pressure of 500 mTorr. With the superb design of the differential pump and the electron transfer optics, a good signal-to-noise ratio was obtained for the XPS core-level spectra at Ar gas pressure up to 1 Torr.

Keywords

Ambient Pressure XPS (AP-XPS) Transmission mode 1D chemical imaging mode 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This study is supported in part by Basic Science Research Program through grants from the National Research Foundation of Korea (NRF) funded by the Korean Government (MOE) (NRF- 2019R1A2C2008052). B. S. Mun would like to acknowledge the support from SRC (C-AXS, NRF-2015R1A5A1009962) and the GRI (GIST Research Institute) Project through a grant provided by GIST in 2019.

References

  1. [1]
    A. Zangwill, Physics at Surfaces (Cambridge University Press, New York, 1988).CrossRefGoogle Scholar
  2. [2]
    Z. Zhongwei, Structure, Mobility, and Composition of Transition Metal Catalyst Surfaces, High-Pressure Scanning Tunneling Microscopy and Ambient-Pressure X-ray Photoelectron Spectroscopy Studies, No. LBNL-6577E, Ernest Orlando Lawrence Berkeley National Laboratory, Berkeley, 2013.Google Scholar
  3. [3]
    C. R. Brundle and A. D. Baker, Electron Spectroscopy: Theory, Techniques and Applications (Academic Press, London, 1978), Vol. 2.Google Scholar
  4. [4]
    K. Siegbahn et al., ESCA: Atomic, Molecular and Solid State Structure Studied by Means of Electron Spectroscopy (Almqvist and Wiksell, Uppsala, 1967).Google Scholar
  5. [5]
    C. S. Fadley et al., Electron Spectroscopy: Theory, Techniques, and Applications (Academic, London 1978), Vol. 2.Google Scholar
  6. [6]
    S. Hüfner, Photoelectron Spectroscopy: Principles and Applications, 3rd ed. (Springer-Verlag, Berlin, Heidelberg, New York, 2003).CrossRefGoogle Scholar
  7. [7]
    K. Siegbahn et al., ESCA Applied to Free Molecules (North-Holland, Amsterdam, 1970).Google Scholar
  8. [8]
    C. S. Fadley, J. Electron. Spectrosc. Rel. Phen. 5 (1974).Google Scholar
  9. [9]
    C. S. Fadley, Progress in Surface Science (Pergamon Press, New York, 1984).Google Scholar
  10. [10]
    C. R. Brundle, J. Vacuum Sci. Technol. 11, 212 (1974).ADSCrossRefGoogle Scholar
  11. [11]
    M. Salmeron and R. Schlögl, Surf. Sci. Rep. 63, 4 (2008).CrossRefGoogle Scholar
  12. [12]
    J. Y. Park, Current Trends of Surface Science and Catalysis (Springer, New York, 2014).CrossRefGoogle Scholar
  13. [13]
    G. Rupprechter, Annu. Rep. Prog. Chem. Sect., C: Phys. Chem. 100, 237 (2004).CrossRefGoogle Scholar
  14. [14]
    G. Rupprechter and C. Weilach, J. Phys. Condens. Mater. 20, 184019 (2008).ADSCrossRefGoogle Scholar
  15. [15]
    K. Siegbahn et al., ESCA Applied to Free Molecules (North-Holland Publishing Company, 1969).Google Scholar
  16. [16]
    H. Siegbahn, J. Phys. Chem. 89, 897 (1985).CrossRefGoogle Scholar
  17. [17]
    H. Fellner-Feldegg et al., J. Electron Spectrosc. Relat. Phenom. 7, 421 (1975).CrossRefGoogle Scholar
  18. [18]
    H. Siegbahn, S. Svensson and M. Lundholm, J. Electron Spectrosc. Relat. Phenom. 24, 205 (1981).CrossRefGoogle Scholar
  19. [19]
    H. Siegbahn and M. Lundholm, J. Electron Spectrosc. Relat. Phenom. 28, 135 (1982).CrossRefGoogle Scholar
  20. [20]
    R. Moberg et al., J. Chem. Phys. 94, 5226 (1991).ADSCrossRefGoogle Scholar
  21. [21]
    R. Moberg et al., J. Am. Chem. Soc. 113, 3663 (1991).CrossRefGoogle Scholar
  22. [22]
    B. Winter et al., J. Phys. Chem. A 108, 2625 (2004).CrossRefGoogle Scholar
  23. [23]
    B. Winter et al., J. Am. Chem. Soc. 127, 7203 (2005).CrossRefGoogle Scholar
  24. [24]
    D. F. Ogletree et al., Rev. Sci. Instrum. 73, 3872 (2002).ADSCrossRefGoogle Scholar
  25. [25]
    M. E. Grass et al., Rev. Sci. Instrum. 81, 053106 (2010).ADSCrossRefGoogle Scholar
  26. [26]
    C. Jeong et al., Curr. Appl. Phys. 16, 73 (2016).ADSCrossRefGoogle Scholar
  27. [27]
    H. Bluhm et al., MRS Bull. 32, 1022 (2007).CrossRefGoogle Scholar
  28. [28]
    Scienta Omicron AB., Development Note: 25 mbar X-Ray Window for MX650 HP (2013).Google Scholar
  29. [29]
    A. Funda et al., Nucl. Instrum. Methods Phys. Res. A 645, 260 (2011).ADSCrossRefGoogle Scholar
  30. [30]
    Björn Wannberg, Nucl. Instrum. Methods Phys. Res. A 601, 182 (2009).ADSCrossRefGoogle Scholar
  31. [31]
    Scienta Omicron AB., Scienta Omicron HiPP-2/HiPP-3 Instrument Manual v2.1 (2016).Google Scholar
  32. [32]
    G. Kerherve et al., Rev. Sci. Instrum. 88, 033102 (2017).ADSCrossRefGoogle Scholar
  33. [33]
    C. Zhang et al., Nat. Mater. 9, 11 (2010).CrossRefGoogle Scholar
  34. [34]
    El Gabaly et al., Phys. Chem. Chem. Phys. 12, 38 (2010).CrossRefGoogle Scholar

Copyright information

© The Korean Physical Society 2019

Authors and Affiliations

  • Hojoon Lim
    • 1
  • Youngseok Yu
    • 1
  • Dongwoo Kim
    • 1
  • Yoobin Esther Koh
    • 1
  • Bongjin Simon Mun
    • 1
    Email author
  • Vincent Lehane
    • 2
  1. 1.Department of Physics and Photon ScienceGwangju Institute of Science and TechnologyGwangjuKorea
  2. 2.Scienta Omicron ABUppsalaSweden

Personalised recommendations