Journal of the Korean Physical Society

, Volume 75, Issue 6, pp 471–475 | Cite as

Effect of Contact Resistance on the High-Field Characteristics of MoS2 Transistors

  • Seunghyun LeeEmail author
  • Lok-won KimEmail author


Layered transition metal dichalcogenides (TMDs) display a wide range of unique electronic properties and are potentially important for electronic device applications. Much interest in these materials led to in-depth research on the device properties of TMDs such as MoS2. Unlike graphene, this material has a relatively large band gap (1.3–1.9 eV) and exhibits stable on/off switching as a transistor. TMD materials represent ideal channel materials for device scalability as their few-atom-thick layers devoid of dangling bonds will be robust against short-channel effects for ultrathin channeled transistors. As MoS2 devices are scaled down, robust high-field operation is essential for the development of reliable electronic systems. In this work, we explore the high-field characteristics of MoS2-based transistors and investigate their relationship to the contact resistance. Importantly, we show that high-voltage characteristics, current drives, and breakdown voltages of MoS2 transistors can be significantly improved through the use of a metal-insulator-semiconductor contact at the metal/MoS2 interface.


MoS2 Transistor High-field 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by grants from Kyung Hee University in 2016 (KHU-20160609) and by National Research Foundation of Korea (NRF) grants funded by the Korea government (No. 2017M1A7A1A01016262) and (No. 2017R1C1B2012227). This work was also supported by the Technology Innovation Program (or Industrial Strategic Technology Development Program (No. 1008 5646, Memristor Fault-Aware Neuromorphic System for 3D Memristor array) funded by the Ministry of Trade, Industry & Energy (MOTIE, Korea). This research was also supported by the Basic Science Research Program through the NRF funded by the Ministry of Education (grant No. 2018R1A6A1A03025708, Study on integrated multifunctional sensor platforms based on autonomous energy).


  1. [1]
    F. Schwierz, Nat. Nanotechnol. 5, 487 (2010).ADSCrossRefGoogle Scholar
  2. [2]
    K. F. Mak et al., Phys. Rev. Lett. 105, 136805 (2010).ADSCrossRefGoogle Scholar
  3. [3]
    Y. Yoon, K. Ganapathi and S. Salahuddin, Nano Lett. 11, 3768 (2011).ADSCrossRefGoogle Scholar
  4. [4]
    N. Kaushik et al., Appl. Phys. Lett. 105, 113505 (2014).ADSCrossRefGoogle Scholar
  5. [5]
    P. Avouris, Z. Chen and V. Perebeinos, in Nanoscience And Technology: A Collection of Reviews from Nature Journals (World Scientific, 2010).Google Scholar
  6. [6]
    E. Pop, Nanotechnology 19, 295202 (2008).CrossRefGoogle Scholar
  7. [7]
    H. Ilatikhameneh et al., IEEE Trans. Nanotechnol. 17, 293 (2018).ADSCrossRefGoogle Scholar
  8. [8]
    E. Pop, S. Sinha and K. E. Goodson, Proc. IEEE 94, 1587 (2006).CrossRefGoogle Scholar
  9. [9]
    G-S. Kim et al., ACS Nano 12, 6292 (2018).CrossRefGoogle Scholar
  10. [10]
    J. Wang et al., Adv. Mater. 28, 8302 (2016).CrossRefGoogle Scholar
  11. [11]
    J. Zhang et al., ACS Nano 8, 6024 (2014).CrossRefGoogle Scholar
  12. [12]
    B. Radisavljevic et al., Nat. Nanotechnol. 6, 147 (2011).ADSCrossRefGoogle Scholar
  13. [13]
    S. Das, H-Y. Chen, A. V. Penumatcha and J. Appenzeller, Nano Lett. 13, 100 (2012).ADSCrossRefGoogle Scholar
  14. [14]
    G-S. Kim et al., ACS Nano 12, 6292 (2018).CrossRefGoogle Scholar
  15. [15]
    R. Kappera et al., Nat. Mater. 13, 1128 (2014).ADSCrossRefGoogle Scholar
  16. [16]
    H. Fang et al., Nano Lett. 12, 3788 (2012).ADSCrossRefGoogle Scholar
  17. [17]
    H. Fang et al., Nano Lett. 13, 1991 (2013).ADSCrossRefGoogle Scholar
  18. [18]
    L. Hung, C. W. Tang and M. G. Mason, Appl. Phys. Lett. 70, 152 (1997).ADSCrossRefGoogle Scholar
  19. [19]
    R. Jackson et al., Adv. Funct. Mater. 18, 2548 (2008).CrossRefGoogle Scholar
  20. [20]
    H. Liu, Y. Liu, D. Zhu and J. Mater. Chem. 21, 3335 (2011).Google Scholar
  21. [21]
    L. Lin, J. Robertson and S. Clark, Microelectron. Eng. 88, 1461 (2011).CrossRefGoogle Scholar
  22. [22]
    T. Nishimura, K. Kita and A. Toriumi, Appl. Phys. Express. 1, 051406 (2008).ADSCrossRefGoogle Scholar
  23. [23]
    J. Hu, K. C. Saraswat and H-S. P. Wong, J. Appl. Phys. 107, 063712 (2010).ADSCrossRefGoogle Scholar
  24. [24]
    J. Hu et al., Appl. Phys. Lett. 99, 252104 (2011).ADSGoogle Scholar
  25. [25]
    X. Cui et al., Nano Lett. 17, 4781 (2017).ADSCrossRefGoogle Scholar
  26. [26]
    V. Heine, Phys. Rev. 138, A1689 (1965).ADSCrossRefGoogle Scholar
  27. [27]
    J. Tersoff, Phys. Rev. Lett. 52, 465 (1984).ADSCrossRefGoogle Scholar
  28. [28]
    R. T. Tung, Phys. Rev. B 64, 205310 (2001).ADSCrossRefGoogle Scholar
  29. [29]
    S-L. Li et al. Nano Lett. 13, 3546 (2013).ADSCrossRefGoogle Scholar
  30. [30]
    S-L. Li et al., ACS Nano 8, 12836 (2014).CrossRefGoogle Scholar
  31. [31]
    C. Lee et al., ACS Nano 4, 2695 (2010).CrossRefGoogle Scholar
  32. [32]
    D. Lembke and A. Kis, ACS Nano 6, 10070 (2012).CrossRefGoogle Scholar
  33. [33]
    P. L. Hower and V. K. Reddi, IEEE Trans. Electron Devices 17, 320 (1970).ADSCrossRefGoogle Scholar
  34. [34]
    T. Georgiou et al., Nat. Nanotechnol. 8, 100 (2013).ADSCrossRefGoogle Scholar

Copyright information

© The Korean Physical Society 2019

Authors and Affiliations

  1. 1.Department of Electronic EngineeringKyung Hee UniversityYonginKorea
  2. 2.Department of Computer ScienceKyung Hee UniversityYonginKorea

Personalised recommendations