Advertisement

Journal of the Korean Physical Society

, Volume 75, Issue 6, pp 430–435 | Cite as

Hawking Effect of AdS2 Black Holes in the Jackiw-Teitelboim Model

  • Wontae KimEmail author
Article
  • 11 Downloads

Abstract

It might be tempting to consider that the two-dimensional anti-de Sitter black hole in the Jackiw-Teitelboim model is thermally hot by invoking the non-vanishing surface gravity, which raises a natural question of “where is the observer to measure the temperature?”, asymptotically at infinity or in a finite region outside the horizon? In connection with this issue, one might expect that the local temperature would also be blue-shifted near the horizon while it would vanish at infinity because of the Tolman factor in the local temperature. In this paper, the local temperature will be shown to vanish and to respect the equivalence principle everywhere as long as a consistent Stefan-Boltzmann law is required. The essential reason for the vanishing local temperature will be discussed on various grounds.

Keywords

Hawking temperature Stefan-Boltzmann law Tolman temperature Hartle-Hawking vacuum Unruh vacuum 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

I would like to thank Eune for discussions. This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (2017R1A2B2006159).

References

  1. [1]
    S. W. Hawking, Commun. Math. Phys. 43, 199 (1975).ADSCrossRefGoogle Scholar
  2. [2]
    S. W. Hawking, Commun. Math. Phys. 43, 167 (1975).CrossRefGoogle Scholar
  3. [3]
    W. Israel, Phys. Lett. A 57, 107 (1976).ADSMathSciNetCrossRefGoogle Scholar
  4. [4]
    J. B. Hartle and S. W. Hawking, Phys. Rev. D 13, 2188 (1976).ADSCrossRefGoogle Scholar
  5. [5]
    R. C. Tolman, Phys. Rev. 35, 904 (1930).ADSCrossRefGoogle Scholar
  6. [6]
    R. Tolman and P. Ehrenfest, Phys. Rev. 36, 1791 (1930).ADSCrossRefGoogle Scholar
  7. [7]
    M. Visser, Phys. Rev. D 54, 5103 (1996).ADSMathSciNetCrossRefGoogle Scholar
  8. [8]
    D. N. Page, Phys. Rev. D 25, 1499 (1982).ADSMathSciNetCrossRefGoogle Scholar
  9. [9]
    Y. Gim and W. Kim, Eur. Phys. J. C 75, 549 (2015).ADSCrossRefGoogle Scholar
  10. [10]
    D. Singleton and S. Wilburn, Phys. Rev. Lett. 107, 081102 (2011).ADSCrossRefGoogle Scholar
  11. [11]
    L. C. Barbado, B. Carlos, L. J. Garay and G. Jannes, J. High Energy Phys. 10, 161 (2016).ADSCrossRefGoogle Scholar
  12. [12]
    S. M. Christensen and S. A. Fulling, Phys. Rev. D 15, 2088 (1977).ADSCrossRefGoogle Scholar
  13. [13]
    M. Eune, Y. Gim and W. Kim, Eur. Phys. J. C 77, 244 (2017).ADSCrossRefGoogle Scholar
  14. [14]
    M. Eune and W. Kim, Phys. Lett. B 773, 57 (2017).ADSMathSciNetCrossRefGoogle Scholar
  15. [15]
    W. Kim, Int. J. Mod. Phys. D 26, 1730025 (2017).ADSCrossRefGoogle Scholar
  16. [16]
    S. Deser and O. Levin, Classical Quant. Grav. 14, L163 (1997).ADSCrossRefGoogle Scholar
  17. [17]
    S. Deser and O. Levin, Phys. Rev. D 59, 064004 (1999).ADSMathSciNetCrossRefGoogle Scholar
  18. [18]
    E. J. Brynjolfsson and L. Thorlacius, J. High Energy Phys. 09, 066 (2008).ADSCrossRefGoogle Scholar
  19. [19]
    C. Teitelboim, Phys. Lett. B 126, 41 (1983).ADSMathSciNetCrossRefGoogle Scholar
  20. [20]
    R. Jackiw, Nucl. Phys. B 252, 343 (1985).ADSCrossRefGoogle Scholar
  21. [21]
    M. Spradlin and A. Strominger, J. High Energy Phys. 11, 021 (1999).ADSCrossRefGoogle Scholar
  22. [22]
    R. B. Mann, A. Shiekh and L. Tarasov, Nucl. Phys. B 341, 134 (1990).ADSCrossRefGoogle Scholar
  23. [23]
    T. Muta and S. D. Odintsov, Prog. Theor. Phys. 90, 247 (1993).ADSCrossRefGoogle Scholar
  24. [24]
    J. P. S. Lemos and P. M. Sa, Mod. Phys. Lett. A 9, 771 (1994).ADSCrossRefGoogle Scholar
  25. [25]
    A. Kumar and K. Ray, Phys. Lett. B 351, 431 (1995).ADSMathSciNetCrossRefGoogle Scholar
  26. [26]
    J. P. Lemos, Phys. Rev. D 54, 6206 (1996).ADSMathSciNetCrossRefGoogle Scholar
  27. [27]
    A. M. Polyakov, Mod. Phys. Lett. A 2, 893 (1987).ADSCrossRefGoogle Scholar
  28. [28]
    A. Bilal and C. G. Callan, Jr., Nucl. Phys. B 394, 73 (1993).ADSCrossRefGoogle Scholar
  29. [29]
    J. Navarro-Salas, M. Navarro and C. F. Talavera, Phys. Lett. B 356, 217 (1995).ADSCrossRefGoogle Scholar
  30. [30]
    M. Cadoni and S. Mignemi, Phys. Rev. D 51, 4319 (1995).ADSMathSciNetCrossRefGoogle Scholar
  31. [31]
    W. T. Kim and J. Lee, Phys. Rev. D 52, 2232 (1995).ADSMathSciNetCrossRefGoogle Scholar
  32. [32]
    C. G. Callan, Jr., S. B. Giddings, J. A. Harvey and A. Strominger, Phys. Rev. D 45, R1005 (1992).ADSCrossRefGoogle Scholar
  33. [33]
    S. Deser, M. J. Duk and C. J. Isham, Nucl. Phys. B 111, 45 (1976).ADSCrossRefGoogle Scholar
  34. [34]
    H. Boschi-Filho and C. P. Natividade, Phys. Rev. D 46, 5458 (1992).ADSMathSciNetCrossRefGoogle Scholar
  35. [35]
    D. G. Boulware, Phys. Rev. D 11, 1404 (1975).ADSMathSciNetCrossRefGoogle Scholar
  36. [36]
    W. G. Unruh, Phys. Rev. D 15, 365 (1977).ADSCrossRefGoogle Scholar
  37. [37]
    W. T. Kim, Phys. Rev. D 60, 024011 (1999).ADSMathSciNetCrossRefGoogle Scholar
  38. [38]
    J. V. Rocha, J. High Energy Phys. 08, 075 (2008).ADSCrossRefGoogle Scholar
  39. [39]
    W. G. Unruh and R. M. Wald, Phys. Rev. D 29, 1047 (1984).ADSCrossRefGoogle Scholar
  40. [40]
    A. Fabbri and J. Navarro-Salas, Modeling Black Hole Evaporation (Published by Impe — Rial College Press and Distributed by World Scientific Publishing Co., 2005).Google Scholar

Copyright information

© The Korean Physical Society 2019

Authors and Affiliations

  1. 1.Department of PhysicsSogang UniversitySeoulKorea

Personalised recommendations