Advertisement

Journal of the Korean Physical Society

, Volume 75, Issue 4, pp 293–303 | Cite as

Investigation of the Ionic Conductivities of Yttria-Doped Ceria and Yttria-Stabilized Zirconia by Using the Statistical Moment Method

  • Le Thu Lam
  • Vu Van Hung
  • Bui Duc TinhEmail author
Article
  • 11 Downloads

Abstract

The ionic conductivities of yttria-doped ceria (YDC) and yttria-stabilized zirconia (YSZ), are investigatied using statistical moment method including the anharmonicity effects of thermal lattice vibrations. The expressions for the lattice constant and the vacancy activation energy are derived in closed analytic forms in terms of the power moments of the atomic displacements. The distribution of oxygen vacancies around dopants and the important role of cation barriers on vacancy diffusion are evaluated in detail. The lattice constants, activation energies, ionic conductivities of YDC and YSZ are calculated as functions of the dopant concentration. Notably, the ionic conductivities depend linearly on dopant concentration. Our results are in good agreement with those of both previous experiments and several theoretical calculations.

Keywords

Ionic conductivities Yttria-doped ceria Yttria-stabilized zirconia Statistical moment method 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    F. Saporiti, R. E. Juarez, F. Audebert and M. Boudard, Mater. Res. 16, 655 (2013).CrossRefGoogle Scholar
  2. [2]
    A. J. Jacobson, Chem. Mater. 22, 660 (2010).CrossRefGoogle Scholar
  3. [3]
    M. Irshad, K. Siraj, R. Raza and A. Ali, Appl. Sci. 6, 75 (2016).CrossRefGoogle Scholar
  4. [4]
    G. Laukaitis, J. Dudonis and D. Milcius, Mater. Sci. 13, 23 (2007).Google Scholar
  5. [5]
    P-L. Chen and I-W. Chen, J. Am. Cream. Soc. 77, 2289 (1994).CrossRefGoogle Scholar
  6. [6]
    K. Muthukkumaran, R. Bokalawela, T. Mathews and S. Selladurai, J. Mater. Sci. 42, 7461 (2007).ADSCrossRefGoogle Scholar
  7. [7]
    P. Li, I-W. Chen, J. E. Penner-Hahn and T-Y. Tien, J. Am. Ceram. Soc. 74, 958 (1991).CrossRefGoogle Scholar
  8. [8]
    V. G. Zavodinsky, Phys. Solid State 46, 453 (2004).ADSCrossRefGoogle Scholar
  9. [9]
    M-Y. Cheng, D-H. Hwang, H-S. Sheu and B-J. Hwang, J. Power Sources 175, 137 (2008).ADSCrossRefGoogle Scholar
  10. [10]
    O. P. Shing, T. Y. Ping, T-Y. Y. Hin and Z. Zainal, J. Appl. Sci. 11, 1285 (2011).ADSCrossRefGoogle Scholar
  11. [11]
    H. Inaba and H. Tagawa, Solid State Ionics 83, 1 (1996).CrossRefGoogle Scholar
  12. [12]
    M. Burbano et al., Chem. Mater. 24, 222 (2012).CrossRefGoogle Scholar
  13. [13]
    D. R. Ou, T. Mori, F. Ye and T. Kobayashi, Appl. Phys. Lett. 89, 171911 (2006).ADSCrossRefGoogle Scholar
  14. [14]
    H. Yoshida et al., Solid State Ionics 160, 109 (2003).CrossRefGoogle Scholar
  15. [15]
    R. Devanathan, W. J. Weber, S. C. Singhal and J. D. Gale, Solid State Ionics 177, 1251 (2006).CrossRefGoogle Scholar
  16. [16]
    F. Shimojo et al., J. Phys. Soc. Jpn 61, 2848 (1992).ADSCrossRefGoogle Scholar
  17. [17]
    M. Meyer, N. Nicoloso and V. Jaenisch, Phys. Rev. B 56, 5961 (1997).ADSCrossRefGoogle Scholar
  18. [18]
    J. P. Goff et al., Phys. Rev. B 59, 14202 (1999).ADSCrossRefGoogle Scholar
  19. [19]
    F. Pietrucci, M. Bernasconi, A. Laio and M. Parrinello, Phys. Rev. B 78, 094301 (2008).ADSCrossRefGoogle Scholar
  20. [20]
    V. V. Hung and B. D. Tinh, Mod. Phys. Lett. B 25, 1101 (2011).ADSCrossRefGoogle Scholar
  21. [21]
    V. V. Hung, J. Lee and K. Masuda-Jindo, J. Phys. Chem. Solids 67, 682 (2006).ADSCrossRefGoogle Scholar
  22. [22]
    K. Masuda-Jindo, V. V. Hung and P.E.A Turchi, Solid State Phenom. 138, 209 (2008).CrossRefGoogle Scholar
  23. [23]
    V. V. Hung, L. T. M. Thanh and K. Masuda-Jindo, Comput. Mater. Sci. 49, S355 (2010).CrossRefGoogle Scholar
  24. [24]
    V. V. Hung, L. T. M. Thanh, N.T. Hai, Adv. Nat. Sci. 7, 21 (2006).Google Scholar
  25. [25]
    N. Tang and V. V. Hung, Phys. Status Solid B 149, 511 (1988).ADSCrossRefGoogle Scholar
  26. [26]
    M. Nakayama and M. Martin, Phys. Chem. Chem. Phys. 11, 3241 (2009).CrossRefGoogle Scholar
  27. [27]
    M. S. Khan, M. S. Islam and D. R. Bates, J. Mater. Chem. 8, 2299 (1998).CrossRefGoogle Scholar
  28. [28]
    R. Pornprasertsuk, P. Ramanarayanan, C. B. Musgrave and F. B. Prinz, J. Appl. Phys. 98, 103513 (2005).ADSCrossRefGoogle Scholar
  29. [29]
    A. Kushima and B. Yildiz, J. Mater. Chem. 20, 4809 (2010).CrossRefGoogle Scholar
  30. [30]
    H. W. Brinkman, W. J. Briels and H. Verweij, Chem. Phys. Lett. 247, 386 (1995).ADSCrossRefGoogle Scholar
  31. [31]
    M. Kilo, C. Argirusis, G. Borchardt and R. A. Jackson, Phys. Chem. Chem. Phys. 5, 2219 (2003).CrossRefGoogle Scholar
  32. [32]
    W. Chen, T. A. Lee and A. Navrotsky, J. Mater. Res. 20, 144 (2005).ADSCrossRefGoogle Scholar
  33. [33]
    A. Bogicevic and C. Wolverton, Europhys. Lett. 56, 393 (2001).ADSCrossRefGoogle Scholar
  34. [34]
    Z-P. Li, T. Mori, J. Zou and J. Drennan, Mater. Res. Bull. 48, 807 (2013).CrossRefGoogle Scholar
  35. [35]
    T. Arima, K. Fukuyo, K. Idemitsu and Y. Inagaki, J. Mol. Liquids 113, 67 (2004).CrossRefGoogle Scholar
  36. [36]
    V. V. Sizov, M. J. Lampinen and A. Laaksonen, Solid State Ionics 266, 29 (2014).CrossRefGoogle Scholar
  37. [37]
    C. J. Fennell and J. D. Gezelter, J. Chem. Phys. 124, 234104 (2006).ADSCrossRefGoogle Scholar
  38. [38]
    P. Demontis, S. Spanu and G. B. Suffritti, J. Chem. Phys. 114, 7980 (2001).ADSCrossRefGoogle Scholar
  39. [39]
    Z-P. Li et al., J. Phys. Chem. C 116, 5435 (2012).CrossRefGoogle Scholar
  40. [40]
    P. K. Schelling and S. R. Phillpot, J. Am. Ceram. Soc. 84, 2997 (2001).CrossRefGoogle Scholar
  41. [41]
    R. Krishnamurthy, Y-G. Yoon, D. J. Srolovitz and R. Car, J. Am. Ceram. Soc. 87, 1821 (2004).CrossRefGoogle Scholar
  42. [42]
    D. Marrocchelli, S. R. Bishop, H. L. Tuller and B. Yildiz, Adv. Funct. Mater. 22, 1958 (2012).CrossRefGoogle Scholar
  43. [43]
    T. S. Zhang et al., Solid State Sciences 5, 1505 (2003).ADSCrossRefGoogle Scholar
  44. [44]
    N. Kim and J. F. Stebbins, Chem. Mater. 19, 5742 (2007).CrossRefGoogle Scholar
  45. [45]
    R. P. Ingle and D. Lewis III, J. Am. Cerarn. Soc. 69, 325 (1986).CrossRefGoogle Scholar
  46. [46]
    S. P. Terblanche, J. Appl. Cryst. 22, 283 (1989).CrossRefGoogle Scholar
  47. [47]
    T. R. Welberry, B. D. Butler, J. G. Thompson and R. L. Withers, J. State Chem. 106, 461 (1993).ADSCrossRefGoogle Scholar
  48. [48]
    C. R. A. Catlow, A. V. Chadwick, G. N. Greaves and L. M. Moroney, J. Am. Ceram. Soc. 69, 272 (1986).CrossRefGoogle Scholar
  49. [49]
    K. Kawata, H. Maekawa, T. Nemoto and T. Yamamura, Solid State Ionics 177, 1687 (2006).CrossRefGoogle Scholar
  50. [50]
    A. Bogicevic and C. Wolverton, Phys. Rev B 67, 024106 (2003).ADSCrossRefGoogle Scholar
  51. [51]
    S. Grieshammer, B. O. H. Grope, J. Koettgen and M. Martin, Phys. Chem. Chem. Phys. 16, 9974 (2014).CrossRefGoogle Scholar
  52. [52]
    D. R. Ou et al., Acta Mater. 54, 3737 (2006).CrossRefGoogle Scholar
  53. [53]
    J. V. Herle et al., J. Eur. Ceram. Soc. 16, 961 (1996).CrossRefGoogle Scholar
  54. [54]
    W. Zajac and J. Molenda, Solid State Ionics 179, 154 (2008).CrossRefGoogle Scholar
  55. [55]
    S. P. S. Badwal, State Ionics 52, 32 (1992).CrossRefGoogle Scholar
  56. [56]
    M. Filal et al., Solid State Ionics 80, 27 (1995).CrossRefGoogle Scholar
  57. [57]
    C. Zhang et al., Mater. Sci. Eng. B 137, 24 (2007).CrossRefGoogle Scholar

Copyright information

© The Korean Physical Society 2019

Authors and Affiliations

  1. 1.Tay Bac UniversitySon LaVietnam
  2. 2.University of Education, Vietnam National UniversityHanoiVietnam
  3. 3.Institute of Research and DevelopmentDuy Tan UniversityDa NangVietnam
  4. 4.Hanoi National University of EducationHanoiVietnam

Personalised recommendations