Advertisement

Journal of the Korean Physical Society

, Volume 75, Issue 3, pp 229–235 | Cite as

Investigation on the Structural, Optical, and Vibrational Properties of Lead-Free (1 − x) Na0.5Bi0.5TiO3-xBiMnO3 Ceramics

  • Muniyandi Muneeswaran
  • Dong Hun Kim
  • Beon Sung Jung
  • Jung Hyun Jeong
  • Jae-Won JangEmail author
  • Byung Chun ChoiEmail author
Article
  • 17 Downloads

Abstract

Single-phased [(1 − x) NBT-xBMO, x = 0.01 (NBTBM1), (1 − x) NBT-xBMO, x = 0.02 (NBTBM2), (1 − x) NBT-xBMO, x = 0.03 (NBTBM3), and (1 − x) NBT-xBMO, x = 0.04 (NBTBM4)] ceramic samples were prepared by using a solid-state method. X-ray diffraction analysis of the (1 − x) NBT-xBMO sample showed a rhombohedral structure and space group of R3c symmetry and confirmed the Rietveld refinement of the X-ray diffraction data. The micro-strain and the crystal sizes were calculated by using Williamson-Hall plots and experimentally verified with microstructural analyses. The in band-gap energy Eg varied from 3.28 to 3.17 eV for the (1 − x) NBT-xBMO ceramic samples. Furthermore, Raman spectra measured in the range from 100 to 1000 nm for the NBT-BMO powder samples showed new phonon modes and shifts to lower frequencies, which may be attributed to the incorporation of BMO into the NBT lattice.

Keywords

NBT-BMO ceramics Band-gap tuning Vibrational phonon mode William-Hall plot 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

Prof. B. C. Choi acknowledges the support of this work by the Pukyong National University Research Fund in 2017.

References

  1. [1]
    R. Nechache et al., Nat. Photonics 9, 61 (2015).ADSCrossRefGoogle Scholar
  2. [2]
    D. Lim and D. H. Kim, J. Korean Phys. Soc. 57, 1444 (2010).ADSCrossRefGoogle Scholar
  3. [3]
    K-Y. Na, K-J. Baek and Y-S. Kim, J. Korean Phys. Soc. 52, 1128 (2008).ADSCrossRefGoogle Scholar
  4. [4]
    B. Lee, S. Han and J. Lee, J. Korean Phys. Soc. 52, 70 (2018).CrossRefGoogle Scholar
  5. [5]
    Y. C. Choi et al., J. Korean Phys. Soc. 49, 523 (2006).Google Scholar
  6. [6]
    S. Gupta et al., Appl. Phys. Lett. 107, 062902 (2015).ADSCrossRefGoogle Scholar
  7. [7]
    M. Liu, M. B. Johnston and H. J. Snaith, Nature 501, 395 (2013).ADSCrossRefGoogle Scholar
  8. [8]
    R. K. Katiyar et al., Appl. Phys. Lett. 106, 082903 (2015).ADSCrossRefGoogle Scholar
  9. [9]
    J. Zhang et al., Nat. Sci. Rep. 3, 2109 (2013).CrossRefGoogle Scholar
  10. [10]
    V. Dorcet, P. Marchet, O. Pena and G. Trolliard, J. Magn. Magn. Mater. 321, 1762 (2009).ADSCrossRefGoogle Scholar
  11. [11]
    K. Sakata and Y. Masuda, Ferroelectrics 7, 347 (1974).CrossRefGoogle Scholar
  12. [12]
    Y. Sun, F. Guo, J. Chen and S. Zhao, Appl. Phys. Lett. 111, 253901 (2017).ADSCrossRefGoogle Scholar
  13. [13]
    N. Quan et al., AIP Adv. 4, 017122 (2014).ADSCrossRefGoogle Scholar
  14. [14]
    C. P. Gonzalez et al., Appl. Phys. Lett. 110, 172902 (2017).ADSCrossRefGoogle Scholar
  15. [15]
    N. Zhang et al., Sci. Rep. 6, 26467 (2016).ADSCrossRefGoogle Scholar
  16. [16]
    G. A. Smolensky, V. A. Isupov, A. I. Agranovskaya and N. N. Krainik, Sov. Phys. Solid State 2, 2651 (2009).Google Scholar
  17. [17]
    A. M. Santos et al., Phys. Rev. B 66, 064425 (2002).ADSCrossRefGoogle Scholar
  18. [18]
    X. S. Xu et al., Appl. Phys. Lett. 96, 192901 (2010).ADSCrossRefGoogle Scholar
  19. [19]
    M. Muneeswaran et al., J. Mater. Sci.: Mater. Electron. 28, 18508 (2017).Google Scholar
  20. [20]
    T. L. Phan et al., J. Appl. Phys. 112, 013909 (2012).ADSCrossRefGoogle Scholar
  21. [21]
    Y. Y. Guo et al., AIP Adv. 5, 097107 (2015).ADSCrossRefGoogle Scholar
  22. [22]
    M. V. Gajendra Babu et al., Mater. Lett. 146, 81 (2015).CrossRefGoogle Scholar
  23. [23]
    J. S. Lee and R. J. De Angelis, Nanostruct. Mater. 7, 805 (1996).CrossRefGoogle Scholar
  24. [24]
    M. Otonicar, S. D. Skapin, M. Spreitzer and D. Suvorov, J. Eur. Ceram. Soc. 30, 971 (2010).CrossRefGoogle Scholar
  25. [25]
    D. E. Jain Ruth and B. Sundarakannan, J. Mater. Sci.: Mater. Electron. 27, 3250 (2016).Google Scholar
  26. [26]
    J. Petzelt et al., J. Phys.: Condens. Matter 16, 2719 (2004).ADSGoogle Scholar
  27. [27]
    D. E. J. Ruth and B. Sundarakannan, Ceram. Int. 42, 4775 (2016).CrossRefGoogle Scholar
  28. [28]
    M. K. Niranjan et al., J. Appl. Phys. 113, 194106 (2013).ADSCrossRefGoogle Scholar
  29. [29]
    M. Muneeswaran, B. C. Choi, S. H. Chang and J. H. Jung, Ceram. Int. 43, 13696 (2017).CrossRefGoogle Scholar
  30. [30]
    J. Liu et al., J. Alloys Compd. 496, 261 (2010).CrossRefGoogle Scholar

Copyright information

© The Korean Physical Society 2019

Authors and Affiliations

  • Muniyandi Muneeswaran
    • 1
  • Dong Hun Kim
    • 2
  • Beon Sung Jung
    • 2
  • Jung Hyun Jeong
    • 2
  • Jae-Won Jang
    • 2
    Email author
  • Byung Chun Choi
    • 2
    Email author
  1. 1.Mechanical EngineeringUniversity of ChileSantiagoChile
  2. 2.Department of PhysicsPukyong National UniversityBusanKorea

Personalised recommendations