Journal of the Korean Physical Society

, Volume 75, Issue 3, pp 218–222 | Cite as

Image Scanning Method for Vascular Pattern Recognition

  • Jihoon Choi
  • Heeso NohEmail author


Because vascular patterns inside skin tissue are unique to individuals and impossible to counterfeit, they can be used for biometric identification. However, due to light scattering by skin tissue, obtaining a clear image without imaging the transmitted light using a lens is difficult, which in turn results in a large detection system. In this study, we present a novel method for imaging vascular patterns that uses image scanning with reflected light and no lenses. We numerically confirm that the image scanning method produces a clearer image than imaging methods that do not employ the scanning method. In addition, using a smaller light source and detector produces a clearer image of vascular patterns. At a scan pixel size of 2 µm, we determined that the degree of cross-correlation was G = 0.74.


Imaging Biological tissue Scattering 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This research was supported by the ICT R&D program of MSIT/IITP, Republic of Korea (1711070427).


  1. [1]
    A. Samal and P. A. Iyengar, Pattern Recognit. 25, 65 (1992).CrossRefGoogle Scholar
  2. [2]
    N. D. Young et al., IEEE Electron Device Lett. 18, 19 (1997).ADSCrossRefGoogle Scholar
  3. [3]
    R. Sanchez-Reillo, C. Sanchez-Avila and A. Gonzalez-Marcos, IEEE Trans. Pattern Anal. Machine Intell. 22, 1168 (2000).CrossRefGoogle Scholar
  4. [4]
    Y. He, J. Cui, T. Tan and Y. Wang, in Proc. IEEE Int. Conf. Pattern Recognition, pp. 557–561. (2006).Google Scholar
  5. [5]
    M. Zhang and H. H. Girault, Electrochem. Comm. 9, 1778 (2007).CrossRefGoogle Scholar
  6. [6]
    N. K. Ratha, J. H. Connell and R. M. Bolle, IBM Syst. J. 40, 614 (2001).CrossRefGoogle Scholar
  7. [7]
    Y. Chen, S. C. Dass and A. K. Jain, in Proc. AVBPA, pp. 160–170 (2005).Google Scholar
  8. [8]
    H. S. Choi et al., Opt. Eng. 48, 047202 (2009).ADSCrossRefGoogle Scholar
  9. [9]
    J. M. Cross and C. L. Smith, in Proc. IEEE Annu. Int. Carnahan Conf. Security Technology, pp. 20–35 (1995).Google Scholar
  10. [10]
    D. Mulyono and S. J. Horng, in Proc. ISBAST, pp. 1–8 (2008).Google Scholar
  11. [11]
    E. C. Lee, H. Jung and D. Kim, Sensors 11, 2319 (2011).CrossRefGoogle Scholar
  12. [12]
    S. J. Xie et al., Sensors 15, 17089 (2015).CrossRefGoogle Scholar
  13. [13]
    K. C. Smith, Laser Ther. 3, 19 (1991).CrossRefGoogle Scholar
  14. [14]
    L. J. Steven, Phys. Med. Biol. 58, R37 (2013).CrossRefGoogle Scholar
  15. [15]
    H. Ding et al., Phys. Med. Biol. 51, 1479 (2006).CrossRefGoogle Scholar
  16. [16]
    E. Lazareva, V. Tuchin, J. Biomed. Photon. Eng. 4, 010503 (2018).CrossRefGoogle Scholar
  17. [17]
    P. Hanrahan and W. Krueger, in Proceedings of SIG-GRAPH, pp. 165–174 (1993).Google Scholar
  18. [18]
    F. Hillerström, A. Kumar and R. Veldhuis, in Proc. BIOSIG, pp. 1–9 (2014).Google Scholar
  19. [19]
    L. G. Henyey and J. L. Greenstein, Astrophys. J. 93, 70 (1941).ADSCrossRefGoogle Scholar
  20. [20]
    R. Graaff et al., Appl. Opt. 32, 435 (1993).ADSCrossRefGoogle Scholar

Copyright information

© The Korean Physical Society 2019

Authors and Affiliations

  1. 1.Department of PhysicsKookmin UniversitySeoulKorea

Personalised recommendations