Journal of the Korean Physical Society

, Volume 74, Issue 10, pp 967–971 | Cite as

Thermoelectric Properties of Mechanically-Alloyed and Hot-Pressed Cu12−xCoxSb4S13 Tetrahedrites

  • Sung-Yoon Kim
  • Go-Eun Lee
  • Il-Ho KimEmail author


Co-doped Cu12−xCoxSb4S13 (0 ≤ x ≤ 1) tetrahedrites were prepared by mechanical alloying and hot pressing. X-ray diffraction analyses revealed that all specimens consisted of single-phase tetrahedrite without secondary phases and that the lattice constant increased with increasing Co content. The electrical conductivity decreased and the Seebeck coefficient increased with increasing Co content because of the reduction in the carrier (hole) concentration resulting from the substitution of Co at Cu sites. In addition, the thermal conductivity decreased as the Co content increased owing to a decrease in the electronic thermal conductivity. A dimensionless figure of merit (ZT)of 0. 94 was obtained at 723 K for Cu11.8Co0.2Sb4S13.


Thermoelectric Tetrahedrite Mechanical alloying Hot pressing 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    K. Suekuni, K. Tsuruta, T. Ariga and M. Koyano, Appl. Phys. Express. 5, 1201 (2012).ADSCrossRefGoogle Scholar
  2. [2]
    X. Lu et al., Adv. Energy Mater. 3, 342 (2013).CrossRefGoogle Scholar
  3. [3]
    T. Barbier et al., J. Alloys Compd. 634, 253 (2015).CrossRefGoogle Scholar
  4. [4]
    X. Lu, D. T. Morelli, Y. Xia and V. Ozolins, Chem. Mater. 27, 408 (2015).CrossRefGoogle Scholar
  5. [5]
    J. Heo et al., Chem. Mater. 26, 2047 (2014).CrossRefGoogle Scholar
  6. [6]
    R. Chetty et al., Acta Mater. 100, 266 (2015).CrossRefGoogle Scholar
  7. [7]
    Y. Q. Yu et al., Mater. Chem. Phys. 131, 1 (2011).CrossRefGoogle Scholar
  8. [8]
    S. Y. Kim et al., J. Electron. Mater. 48, 1857 (2019).ADSCrossRefGoogle Scholar
  9. [9]
    G. J. Snyder and E. S. Toberer, Nat. Mater. 7, 105 (2008).ADSCrossRefGoogle Scholar
  10. [10]
    R. Chetty et al., Phys. Chem. Chem. Phys. 17, 1716 (2015).CrossRefGoogle Scholar
  11. [11]
    X. Yan et al., Nano Lett. 10, 3373 (2010).ADSCrossRefGoogle Scholar
  12. [12]
    H. Cailat, A. Borshchevsky and J. P. Fleurial, J. Appl. Phys. 80, 4442 (1996).ADSCrossRefGoogle Scholar
  13. [13]
    B. Madaval and S. J. Hong, J. Electron. Mater. 45, 12 (2016).CrossRefGoogle Scholar

Copyright information

© The Korean Physical Society 2019

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringKorea National University of TransportationChungjuKorea

Personalised recommendations