Journal of the Korean Physical Society

, Volume 74, Issue 10, pp 946–950 | Cite as

Compact Optical Switch Using the Tunability of a Au-Coated Hollow Core Waveguide

  • Chang-Hwan BaeEmail author


We design and fabricate a directional coupler type compact optical switch using the large variable characteristics of a hollow optical waveguide and use numerical simulations and experimentations to investigate the optical characteristics of the proposed directional coupler-type hollow waveguide optical switch. The optical switching operation is achieved by the optical power mode field distribution change and the coupling length in the directional coupler waveguide region because the air core thickness of the hollow waveguide is mechanically controlled by the electrical signal. The designed three-dimensional (3-D) optical hollow waveguide consists of a Au-coated reflector. The numerical simulation results show the possibility of a compact optical switch with a switch length of 1 mm when the air core thickness of the hollow optical waveguide is changed by 2 µm. The experimental device was a microstructured hollow optical waveguide coated with a thin Au film on a GaAs substrate using the same parameters as there used in the modeling. The experiment revealed a switching length of 0.9 mm and an extinction ratio of about 19 dB with a small change of air core thickness.


Optical switch Hollow waveguide Directional coupler Au film Effective refractive index Air core 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    S. Nojima, Appl. Phys. Lett. 55, 1868 (1989).ADSCrossRefGoogle Scholar
  2. [2]
    T. Pertsch et al., Appl. Phys. Lett. 80, 3247 (2002).ADSCrossRefGoogle Scholar
  3. [3]
    J. Yang, Q. Zhou and R. T. Chen, Appl. Phys. Lett. 81, 2947 (2002).ADSCrossRefGoogle Scholar
  4. [4]
    S. Toyoda et al., Electron. Lett. 36, 1803 (2000).CrossRefGoogle Scholar
  5. [5]
    E. V. Tomme, P. P. Van Daele, R. G. Baets and P. E. Lagasse, IEEE J. Quantum Electronics 27, 778 (1991).ADSCrossRefGoogle Scholar
  6. [6]
    T. Nikolajsen, K. Leosson and S. I. Bozhevolnyi, Appl. Phys. Lett. 85, 5833 (2004).ADSCrossRefGoogle Scholar
  7. [7]
    U. Fischer, B. Schuppert and K. Petermann, IEEE Photon. Technology Lett. 6, 978 (1994).ADSCrossRefGoogle Scholar
  8. [8]
    B. Liu, A. Shakier, P. Abraham and J.E. Bowers, Electron. Lett. 34, 2160 (1998).Google Scholar
  9. [9]
    T. Miura et al., Jpn. J. Appl. Phys. 40, L688 (2001).ADSCrossRefGoogle Scholar
  10. [10]
    T. Miura, F. Koyama and A. Matsutani, Jpn. J. Appl. Phys. 41, 4785 (2002).ADSCrossRefGoogle Scholar
  11. [11]
    C-H. Bae and F. Koyama, J. Korean Phys. Soc. 52, 1763 (2008).ADSCrossRefGoogle Scholar
  12. [12]
    R. N. Jenkins et al., in Proc. 29th ECOC (Italy, Tu1.2.4, 162, 2003).Google Scholar
  13. [13]
    A. Yehia, K. Madkour, H. Maaty and D. Khalil, IEEE Photon. Technol. Lett. 16, 2072 (2004).ADSCrossRefGoogle Scholar
  14. [14]
    C-H. Bae and F. Koyama, IEICE ELEX 1, 551 (2004).CrossRefGoogle Scholar
  15. [15]
    C-H. Bae and F. Koyama, Opt. Express 13, 3259 (2005).ADSCrossRefGoogle Scholar
  16. [16]
    C-H. Bae and F. Koyama, Jpn. J. Appl. Phys. 45, 6648 (2006).ADSCrossRefGoogle Scholar
  17. [17]
    C-H. Bae and Y-H. Son, in 23 th ITC-CSCC (Shimonoseki, Japan, Jul., P1–113, 2008).Google Scholar
  18. [18]
    Y. Sakurai, A. Matsutani, T. Sakaguchi and F. Koyama, Jpn. J. Appl. Phys. 44, L1171 (2005).ADSCrossRefGoogle Scholar
  19. [19]
    T. Miura and F. Koyama, in 30 th ECOC (Stockholm, Sweden, Sep. We4.P.052, 2004).Google Scholar

Copyright information

© The Korean Physical Society 2019

Authors and Affiliations

  1. 1.Division of Information Communication EngineeringHoseo UniversityAsanKorea

Personalised recommendations