Journal of the Korean Physical Society

, Volume 74, Issue 2, pp 88–93 | Cite as

Comparative Study of Trans-linear and Trans-impedance Readout Circuits for Optical Beam Deflection Sensors in Atomic Force Microscopy

  • Bernard Ouma Alunda
  • Luke Oduor Otieno
  • Melody Chepkoech
  • Clare Chisu ByeonEmail author
  • Yong Joong Lee


The optical beam deflection sensor remains the most popular force detection method used in atomic force microscopy. With the recent development of short cantilevers, a means for measuring small deflections at high frequencies has become a challenge. Minimizing the noise level of the readout electronics without significantly limiting the detection bandwidth still remains a challenge. In this work, a recently proposed trans-linear readout circuit-based technique, in which necessary analog arithmetics are done in the current domain instead of the voltage domain, is compared to a more traditional trans-impedance readout circuit-based topology. Our developed trans-impedance readout circuit recorded a noise floor of 9.48 × 10−13 V2 Hz−1 compared to 1.41 × 10−11 V2 Hz−1 for the trans-linear readout circuit. Also, the measured −3 dB bandwidth of 11 MHz for the transimpedance readout circuit was slightly higher than the 10 MHz for the trans-linear readout circuit. Trans-impedance readout circuits, with proper circuit design considerations and careful selection of electronic parts, still remain competitive for use in high-speed operations in atomic force microscopy.


Atomic force microscopy Cantilever Optical beam deflection Thermal noise 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    N. Kodera, D. Yamamoto, R. Ishikawa and T. Ando, Nature 468, 72 (2010).ADSCrossRefGoogle Scholar
  2. [2]
    M. Shibata, H. Watanabe, T. Uchihashi, T. Ando and R. Yasuda, Biophys. Physicobiol. 14, 127 (2017).CrossRefGoogle Scholar
  3. [3]
    I. Casuso, F. Rico and S. Scheuring, Curr. Opin. Chem. Biol. 15, 704 (2011).CrossRefGoogle Scholar
  4. [4]
    M. Shibata, H. Yamashita, T. Uchihashi, H. Kandori and T. Ando, Nat. Nanotech. 5, 208 (2010).ADSCrossRefGoogle Scholar
  5. [5]
    T. Uchihashi, R. Iino, T. Ando and H. Noji, Science 333, 755 (2011).ADSCrossRefGoogle Scholar
  6. [6]
    T. Fukuma, Y. Okazaki, N. Kodera, T. Uchihashi and T. Ando, Appl. Phys. Lett. 92, 243119 (2008).ADSCrossRefGoogle Scholar
  7. [7]
    H. Watanabe, T. Uchihashi, T. Kobashi, M. Shibata, J. Nishiyama, R. Yasuda and T. Ando, Rev. Sci. Instrum. 84, 053702 (2013).ADSCrossRefGoogle Scholar
  8. [8]
    G. Schitter, K. J. Astrom, B. E. DeMartini, P. J. Thurner, K. L. Turner and P. K. Hansma, IEEE Trans. Control Syst. Technol. 15, 906 (2007).CrossRefGoogle Scholar
  9. [9]
    A. Ahmad, A. Schuh and I. W. Rangelow, Rev. Sci. Instrum. 85, 103706 (2014).ADSCrossRefGoogle Scholar
  10. [10]
    S. Necipoglu, S. A. Cebeci, Y. E. Has, L. Guvenc and C. Basdogan, IEEE Trans. Nanotechnol. 10, 1074 (2011).ADSCrossRefGoogle Scholar
  11. [11]
    R. Enning, D. Ziegler, A. Nievergelt, R. Friedlos, K. Venkataramani and A. Stemmer, Rev. Sci. Instrum. 82, 043705 (2011).ADSCrossRefGoogle Scholar
  12. [12]
    T. Fukuma, Rev. Sci. Instrum. 80, 023707 (2009).ADSCrossRefGoogle Scholar
  13. [13]
    P. E. Rutten, Rev. Sci. Instrum. 82, 073705 (2011).ADSCrossRefGoogle Scholar
  14. [14]
    D. A. Walters, J. P. Cleveland, N. H. Thomson, P. K. Hansma, M. A. Wendman, G. Gurley and V. Elings, Rev. Sci. Instrum. 67, 3583 (1996).ADSCrossRefGoogle Scholar
  15. [15]
    G. Binnig, C. F. Quate and Ch. Gerber, Phys. Rev. Lett. 56, 930 (1986).ADSCrossRefGoogle Scholar
  16. [16]
    E. Meyer, Ph.D. Thesis, Basel University, Basel, Switzerland, 1990.Google Scholar
  17. [17]
    T. Itoh and T. Suga, Nanotechnology 4, 218 (1993).ADSCrossRefGoogle Scholar
  18. [18]
    N. V. Andreeva, Ferroelectrics 525, 178 (2018).CrossRefGoogle Scholar
  19. [19]
    C. A. J. Putman, B. G. de Grooth, N. F. van Hulst and J. Greve, Ultramicroscopy 42, 1509 (1992).CrossRefGoogle Scholar
  20. [20]
    B. Routley and A. J. Fleming, 2016 International Conference on Manipulation, Automation and Robotics at Small Scales (Paris, France, July 18–22, 2016), p. 1.Google Scholar
  21. [21]
    G. Meyer and N. M. Amer, Appl. Phys. Lett. 53, 1045 (1988).ADSCrossRefGoogle Scholar
  22. [22]
    S. Hosaka, K. Etoh, A. Kikukawa and H. Koyanagi, J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process Meas. Phenom. 18, 94 (2000).ADSCrossRefGoogle Scholar
  23. [23]
    T. Fukuma and S. P. Jarvis, Rev. Sci. Instrum. 77, 043701 (2006).ADSCrossRefGoogle Scholar
  24. [24]
    T. Fukuma, M. Kimura, K. Kobayashi, K. Matsushige and H. Yamada, Rev. Sci. Instrum. 76, 053704 (2005).ADSCrossRefGoogle Scholar
  25. [25]
    A. Labuda, K. Kobayashi, Y. Miyahara and P. Grütter, Rev. Sci. Instrum. 83, 053703 (2012).ADSCrossRefGoogle Scholar
  26. [26]
    B. Gilbert, Electron. Lett. 11, 14 (1975).CrossRefGoogle Scholar
  27. [27]
    M. J. Higgins, R. Proksch, J. E. Sader, M. Polcik, S. Mc Endoo, J. P. Cleveland and S. P. Jarvis, Rev. Sci. Instrum. 77, 013701 (2006).ADSCrossRefGoogle Scholar
  28. [28]
    N. Mullin and J. K. Hobbs, Rev. Sci. Instrum. 85, 113703 (2014).CrossRefGoogle Scholar
  29. [29]
    S. Torbrügge, J. Lübbe, L. Tröger, M. Cranney, T. Eguchi, Y. Hasegawa and M. Reichling, Rev Sci. Instrum. 79, 083701 (2008).ADSCrossRefGoogle Scholar

Copyright information

© The Korean Physical Society 2019

Authors and Affiliations

  • Bernard Ouma Alunda
    • 1
  • Luke Oduor Otieno
    • 1
  • Melody Chepkoech
    • 1
  • Clare Chisu Byeon
    • 1
    Email author
  • Yong Joong Lee
    • 1
  1. 1.School of Mechanical EngineeringKyungpook National UniversityDaeguKorea

Personalised recommendations